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Abstract. We develop a non-linear approximation for solution manifolds of parametrised time-dependent hyperbolic4
PDEs. Our non-linear approximation space is a span of snapshots evaluated on a transformed spatial domain. We compute5
a solution in the non-linear approximation space using residual minimisation. We reduce the cost of residual minimisation6
by minimising and evaluating the residual on a set of collocation points. We decompose the collocation points computation7
into an offline and an online phase. The offline phase computes the collocation points for a set of training parameters by8
minimising a bound on the L2-error of the reduced-order model. Moreover, the online phase transports the collocation9
points computed offline. Our hyper-reduction is general in the sense that it does not assume a specific form of the spatial10
transform. As a particular instance of the non-linear approximation space, we consider a span of shifted snapshots. We11
consider shifts that are local in the time-parameter domain and propose an efficient algorithm to compute the same. Our12
shift computation is data-driven in the sense that it only requires the snapshots and not the underlying characteristic13
speeds of the hyperbolic equation. Several benchmark examples involving single and multi-mode transport demonstrate the14
effectiveness and the limitations of our method.15

1. Introduction16

We consider the evolution equation17
(1.1)
∂tu(x, t, µ) = L(u(x, t, µ), µ) for (x, t, µ) ∈ Ω× [0, T ]× P, u(x, 0, µ) = u0(x, µ) for (x, µ) ∈ Ω× P,

G(u(x, t, µ), µ) = 0 for (x, t, µ) ∈ ∂Ω× [0, T ]× P,

where P ⊂ R is a bounded parameter domain, T is the final time, u0(·, µ) is the initial data, and Ω ⊂ Rd is18
a bounded and open spatial domain. Moreover, the operator G(·, µ) prescribes some boundary conditions.19
We denote the spatial regularity by u(·, t, µ) ∈ X , and we consider scalar equations i.e., u(x, t, µ) ∈ R.20
For hyperbolic problems, the evolution operator L(·, µ) : R→ R is of the form21

L(·, µ) = −∇ · f(·, µ),(1.2)

where f(·, µ) : R→ Rd is the flux function and ∇ represents a spatial gradient. To discretize the evolution22
equation we consider discrete time steps 0 = t1 < t2 < · · · < tK = T where at each time instance, we23
approximate u(·, tk, µ) by uN (·, tk, µ) ∈ XN . Here, XN ⊂ X is N -dimensional and is (usually) of the24
finite-element or finite-volume type. For any k ∈ {1, . . . ,K}, we refer to uN (·, tk, µ) as the full-order25
model (FOM).26

The space XN is high-dimensional resulting in an expensive computation for applications where the27
evolution equation must be solved for different parameter instances. This motivates one to look for a28
reduced-order model (ROM) where one approximates the FOM by un(·, tk, µ) ∈ Xn with dim(Xn) =29
n� N . The low-dimensionality of Xn allows for a possibility of fast computations. We emphasize that30
the availability of a low-dimensional approximation space is not sufficient to ensure the computational31
efficiency of a ROM. Further reduction might be needed to make the ROM efficient [2, 5, 6, 9]. Indeed,32
this will also be the case for the approximation space we propose.33

In most ROMs, the solution manifold (i.e. the set {u(·, t, µ) : (t, µ) ∈ [0, T ] × P}) of the evolution34
equation (1.1) is approximated in a linear space Xn. See, for example, [3, 14, 24, 26]. The approximability35
of a solution manifold in a linear space is quantified by its Kolmogorov n-width. The faster the decay in the36
Kolmogorov width with n, better is the approximability of a solution manifold in a n-dimensional linear37
space. For parameterised elliptic and parabolic problems, the Kolmogorov width decays exponentially,38
allowing for (acceptably) low-dimensional and accurate linear approximations [7]. However, for hyperbolic39
equations, the Kolmogorov n-width decay slowly. One example is the 1D wave equation where the40
Kolmogorov width is bounded from below by O(1/

√
n); see [12] for a proof. A slow Kolmogorov width41

decay makes a linear approximation unappealing because it forces one to choose a large value of n for42
acceptable accuracy.43

Poor accuracy of a linear approximation motivates the search for a non-linear approximation. To44
construct a non-linear approximation space, one can introduce (µ, t)-locality in the linear space Xn.45
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2 FULL-ORDER MODEL (FOM)

We denote such a space by Xnµ,t. Such locality can allow one to capture the characteristic wave speeds46
of a hyperbolic equation that are local in the (µ, t)-domain. The use of a non-linear approximation47
space (for hyperbolic problems) first appeared in [25] where authors considered a shifted KL-expansion48
with the shift accounting for the transport in the solution. Similar idea was explored in [19] where49
authors consider the decomposition Xnµ,t = {g(µ, t) · v(µ, t)}, with g(µ, ·) being an element of a Lie-group50
and v(µ, ·) being a template function. Replacing g(µ, t) · v(µ, t) into the evolution equation (1.1), the51
resulting equations for g(µ, ·) and v(µ, ·) are closed with phase conditions and then reduced using empirical52
operator interpolation. Authors in [4] consider a different approach and construct Xnµ,t by (i) reducing the53
Kolmogorov width with a (µ, t)-dependent spatial transform; (ii) performing POD on the transformed54
spatial domain; (iii) transforming the POD modes back to the original spatial domain; and (iv) performing55
residual minimisation with the transformed POD modes. Similarly in [18], for steady-state problems, Xnµ56
is the span of snapshots evaluated on a transformed spatial domain with the transformation being a57
polynomial in µ and a Fourier series expansion in x. Some works develop the approximation space58
online (thus skipping the offline phase altogether) and this, by construction, can lead to a non-linear59
approximation [11, 20]. Works in [22, 30] consider a non-linear interpolation for solutions to hyperbolic60
problems where the snapshots computed offline are non-linearly interpolated (with Lagrange polynomials61
for example) online. This results in the evolution equation being used only in the offline phase, which62
leads to computational efficiency.63

Following the work in [18, 25, 30], we consider a Xnµ,t that is a span of snapshots evaluated on a64
transformed spatial domain. We find a solution in Xnµ,t using residual minimisation [1, 2, 5, 18]. The65
residual computation loops over all the mesh elements (or all the degrees of freedom of XN ), which66
increases the online computation cost of a ROM. To reduce this cost, we evaluate and minimise the67
residual on a subset of mesh points, or the so-called collocation points. We develop an L2-error bound for68
our ROM and, offline, we use it to compute the collocation points for a set of training parameters. We69
then transport these collocation points during the online phase. Our algorithm for the computation of70
the collocation points does not assume a specific form of the spatial transform and thus, can be applied71
to various other spatial transforms developed in [18, 22, 30].72

As a particular instance of the non-linear space Xnµ,t, we consider the span of shifted snapshots. With73
the shifts in the snapshots, we capture the dominant ”transport” mode in the solution, and with a linear74
combination of the shifted snapshots, we capture the ”shape” change in the solution. We consider spatial75
shifts that are local in the (µ, t)-domain. We compute the shifts using residual minimisation, where, we76
minimise the residual over shifts that align shocks and local minima/maxima in the snapshots. While77
doing so, we do not use the characteristic speeds of the hyperbolic equation (1.1). This results in a78
data-driven algorithm that computes the shifts using solely the solution snapshots. Such an algorithm is79
desirable for problems with a spatial dimension greater than one where using the characteristic speeds80
are difficult to compute [30].81

The article is structured as follows. The second and the third section present the FOM and the ROM,82
respectively. The fourth section presents our algorithm for hyper-reduction. The fifth section discusses83
the computation of the spatial transform. The sixth section discusses the relation to the relevant previous84
works, and the seventh section presents our numerical results.85

2. Full-Order Model (FOM)86

For simplicity of exposition, in the following sections, we assume a one-dimensional domain i.e., d = 187
in (1.1). The coming discussion clarifies that an extension to multi-dimensions is straightforward. Later,88
we also consider numerical example involving a multi-dimensional spatial domain. Let Ω = [xmin, xmax].89
Let {Ixi }i=1,...,nx be a discretization of Ω with Ixi = [xmin + (i − 1)∆x, xmin + i × ∆x] and nx∆x =90
xmax − xmin. For the spatial and the temporal discretization of the evolution equation (1.1), we consider91
a cell-centred finite-volume (FV) scheme and an explicit-Euler scheme, respectively. For a FV scheme,92
XN is a span of scaled characteristic functions of the set Ixi , and reads93

L2(Ω) ⊃ XN = span{φi : φi = 1√
∆x

1Ix
i
, i ∈ {1, . . . , N}}.(2.1)

Above, 1A represents a characteristic function of the set A ⊂ R, and N = nx. Note that φi’s are L2(Ω)94
orthogonal. For convenience, we collect all these basis functions in a vector Φ(x) ∈ RN such that95

(Φ(x))i = φi(x), i ∈ {1, . . . , N}.(2.2)
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Using XN , we express the evolution equation for the FOM as96 〈
Φ, uN (·, tk+1, µ)

〉
=
〈
Φ, uN (·, tk, µ)

〉
+ ∆t×

〈
Φ, LN (uN (·, tk, µ), µ)

〉
, ∀k ∈ {1, . . . ,K − 1},(2.3)

where LN : XN → XN is a finite-volume discretization of the operator L, and the initial condition is97
given as

〈
Φ, uN (·, t1 = 0, µ)

〉
= 〈Φ, u0(·, µ)〉. Moreover, for any w ∈ L2(Ω), we interpret 〈Φ, w〉 as98

(〈φ1, w〉L2(Ω) , . . . , 〈φN , w〉L2(Ω))T . We include a discretization of the boundary operator G in LN . For99
simplicity, we consider a constant µ-independent time-step of ∆t > 0. Between the discrete time-steps100
{tk}k=1,...,K , we extend uN (·, tk, µ) by a constant i.e., uN (·, t, µ) = uN (·, tk, µ) for all t ∈ [tk, tk+1).101

The operator LN relies on a numerical flux, which we consider to be a local Lax-Friedrich (LLF) flux.102
An explicit form of the flux is not of importance here but can be found in [15]. With the LLF flux, and103
for a sufficiently regular initial and boundary data, the L2(Ω)/L∞(Ω)-stability of the discretization (2.3)104
is ensured by choosing (see [10, 27])105

∆t ≤ ∆x
max

(x,t,µ)∈Ω×[0,T ]×P
|f ′(uN (x, t, µ), µ)| ,(2.4)

where f ′(uN (x, t, µ), µ) represents the derivative of f(·, µ) evaluated at uN (x, t, µ). During numerical106
experiments (in section 7), we consider a one-dimensional parameter domain where |f ′(uN (x, t, µ), µ)| is107
monotonic in µ. This ensures the above bound for µ equals the maximum or the minimum parameter108
value.109

3. Reduced-Order Model (ROM)110

In the following discussion, we develop a reduced approximation for the FOM where the approxima-111
tion space is different for each µ and tk, and is denoted by Xnµ,tk .112

3.1 Approximation Space for the ROM Consider a 1D parameter domain. An exten-113
sion to multi-dimensions is possible using tensor products discussed in [29]. We partition the parameter114
domain as115

P =
nµ⋃
i=1
Ii where Ii = [µi, µi+1].(3.1)

We will refer to Ii as the parameter elements. For every parameter µ ∈ P, there exists a m ∈ {1, . . . , nµ}116
such that µ ∈ Im. For convenience, we define117

m = γ(µ).(3.2)

We do not have a restriction on the value of nµ or the size of Ii. In the numerical experiments, we choose118
some value for nµ and consider parameter elements of the same size. Such a choice can also be made119
with a greedy-algorithm, which requires an a-posteriori error bounds. We postpone the development of120
such an a-posteriori error bound to our future works.121

We motivate our approximation space with the help of an example, similar examples can be found122
in [4, 22, 30]. Consider the manifold M := {f(·, µ) : µ ∈ P} ⊂ L2(R), where f(·, µ) is a step function123
that scales and shifts to the right, and is given as124

f(x, µ) :=
{

1 + µ, x ≤ µ
0, x > µ

, µ ∈ P := [0, 1].

Let {f(·, µ̂i)}i=1,...,n, where µ̂i ∈ P, represent a set of n snapshots taken fromM; some of these snapshots125
are shown in Fig 1a. With a reduced-basis type approach, we can approximate f(·, µ) (where µ 6∈126
{µ̂i}i=1,...,n) in the span of these snapshots. Such a span is linear and with M having a slow decaying127
Kolmogrov n-width (see [20]), we require a large value of n for acceptable accuracy. Now instead of the128
manifoldM, consider the following manifoldMµ that consists of all the step functions shifted such that129
their discontinuities are aligned with the discontinuity in f(·, µ)130

Mµ :={f(ϕ(·, µ, µ̂), µ̂) : ϕ(·, µ, µ̂) = x− (µ− µ̂), µ̂ ∈ P},
={αf(·, µ) : α ∈ [1, 2]}.
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3 REDUCED-ORDER MODEL (ROM)

The snapshots taken from the manifold Mµ are shown in Fig 1b. From the above definition of Mµ we131
conclude that f(·, µ) is well-approximated in the span of a single snapshot (different from f(·, µ)) taken132
fromMµ.1 In the terminology of [4], the spatial transform ϕ(·, µ, µ̂) calibrates the manifoldM such that133
the snapshots from the resulting manifold Mµ better approximate f(·, µ).134
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Figure 1: Snapshots taken from (a) M and (b) Mµ.

From previous numerical experiments and theoretical results (for e.g. see [18, 20, 30]) we know135
that uN (·, tk, µ) is poorly approximated in the span of snapshots taken from the manifold Mtk :=136
{uN (·, tk, µ̂) : µ̂ ∈ P}. However, similar to [4, 30], we assume that there exists a spatial transform137
ϕ(·, µ, µ̂, tk) : Ω → Ω that calibrates Mtk such that uN (·, tk, µ) is better approximated in the span of138
snapshots collected from139

Mµ,tk := {uN (ϕ(·, µ, µ̂, tk), tk, µ̂) : µ̂ ∈ P}.(3.3)

To ensure that uN (·, tk, µ) ∈Mµ,tk , we require140

ϕ(·, µ, µ, tk) = Id,(3.4)

where Id is an identity operator. We will compute ϕ(·, µ, µ̂, tk) such that the above property is satisfied.141
Note that compared to our example, the additional time-dependency in the spatial transform accounts142
for the time-dependency in the solution.143

To collect snapshots from the manifold Mµ,tk , we use the observation made in [1, 2, 18] as per144
which snapshots corresponding to the parameters that are in the neighbourhood of µ are sufficient to145
approximate uN (·, tk, µ). Therefore, we take snapshots at M ≥ 2 different parameters in Iγ(µ) given as146
µγ(µ) ≤ µ̂1 < µ̂2 < · · · < µ̂M ≤ µγ(µ)+1, where γ is defined in (3.2). Approximating uN (·, tk, µ) in the147
span of these snapshots provides148

(3.5)
uN (·, tk, µ) ≈ un(·, tk, µ) ∈ Xnµ,tk ,

where Xnµ,tk := span{ψjµ,tk : ψjµ,tk = uN (ϕM (·, µ, µ̂j , tk), tk, µ̂j), j ∈ {1, . . . ,M}}.

Above, ϕM (·, µ, µ̂j , tk) is an approximation to ϕ(·, µ, µ̂j , tk), and is given as follows. For some µ̂j ∈149
{µ̂i}i=1,...,M , consider the function µ 7→ ϕ(x, µ, µ̂j , tk). Assume that we can compute this function for all150
µ ∈ {µ̂i}i=1,...,M then we can approximate it using Lagrange interpolation as [30]151

ϕ(x, µ, µ̂j , tk) ≈ ϕM (x, µ, µ̂j , tk) :=
M∑
i=1

li−1(µ)ϕ(x, µ̂i, µ̂j , tk).(3.6)

1Indeed, the best L2-approximation of f(·, µ) in the span of a single snapshot ( 6= f(·, µ)) from Mµ is f(·, µ).
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3.2 Residual Minimisation

Above, li is an i-th order Lagrange polynomial. We will refer to the different ϕ(x, µ̂i, µ̂j , tk) as the152
snapshots of the spatial transform. Later (in section 5) we assume a specific form for ϕ(·, µ̂i, µ̂j , tk) and153
discuss its computation.154

In our numerical experiments, we consider parameters {µ̂i}i=1,...,M that are uniformly placed inside155
Iγ(µ). With an a-posteriori error indicator, one can also choose the set {µ̂i}i=1,...,M using the different156
techniques outlined in [8, 9, 16, 28]. The performance of each of these techniques changes with the test-157
case and the approximation space. Although an interesting question in its own right, we do not study158
the influence of these techniques upon the approximation quality of Xnµ,tk .159

Remark 1. In (3.6), we approximate ϕ(x, ·, µ̂j , tk) in the linear space span{li}i=0,...,(M−1), which160
is in contrast to our non-linear approximation for uN (·, tk, µ). Current literature and this article of-161
fers no solution to problems (if they exist) where the spatial transform could also require a non-linear162
approximation.163

Remark 2. One can consider a different polynomial degree than M to approximate the spatial trans-164
form in (3.6). For simplicity, we consider this polynomial degree to be M .165

3.2 Residual Minimisation We compute a solution in Xnµ,tk using residual-minimisation.166
Writing the finite-volume scheme (2.3) as a residual minimisation problem provides167

uN (·, tk+1, µ) = arg min
w∈XN

‖Restk(w, uN (·, tk, µ))‖RN , ∀k ∈ {0, . . . ,K − 1},(3.7)

where XN is the high-dimensional finite volume space given in (2.1). The residual Restk : XN×XN → RN168
follows from (2.3) and is given as169

(3.8) Restk(w, v) :=
{
〈Φ, w〉 − 〈Φ, v〉 −∆t×

〈
Φ, LN (v, µ)

〉
, k ∈ {1, . . . ,K − 1},

〈Φ, w〉 − 〈Φ, u0(·, µ)〉 , k = 0.

All the other quantities are as given in (2.3). For simplicity of notation, in the following discussion we170
suppress the time dependency of Restk .171

Motivated from the residual formulation (3.7) of the FV scheme (2.3), we approximate uN (·, tk+1, µ)172
in Xnµ,tk+1

by minimising the RN -norm of the residual. Similar to the formulations in [1, 2], this provides173

uN (·, tk+1, µ) ≈ un(·, tk+1, µ) = arg min
w∈Xnµ,tk+1

‖Res(Πµ,tk+1w,Πµ,tku
n(·, tk, µ))‖RN ,(3.9)

where Πµ,tk : Xnµ,tk → X
N is a projection operator defined later, and k ∈ {0, . . . ,K−1}. For convenience,174

we express the minimisation problem (3.9) in a matrix-vector product form. Every w ∈ Xnµ,tk has the175
form w(x) = 〈α,Ψµ,tk(x)〉RM , where α ∈ RM contains the expansion coefficients, and Ψµ,tk(x) ∈ RM is176
a vector containing all the basis functions given in (3.5). By substituting this expression for w into the177
minimisation problem (3.9) we find178

αµ,tk+1 = arg min
α∈RM

‖Aµ,tk+1α− bµ,tk‖RN , ∀k ∈ {0, . . . ,K − 1},(3.10)

where αµ,tk+1 ∈ RM and is such that un(x, tk+1, µ) =
〈
αµ,tk+1 ,Ψµ,tk+1(x)

〉
RM . The matrix Aµ,tk+1 ∈179

RN×M and the vector bµ,tk ∈ RN are defined as180

(3.11)
Aµ,tk+1 :=

(〈
Φ,Πµ,tk+1ψ

1
µ,tk+1

〉
, . . . ,

〈
Φ,Πµ,tk+1ψ

M
µ,tk+1

〉)
,

bµ,tk := 〈Φ,Πµ,tku
n(·, tk, µ)〉+ ∆t×

〈
Φ, LN (Πµ,tku

n(·, tk, µ), µ)
〉
,

with ψjµ,tk+1
as given in (3.5). Note that the definition of Res given in (3.8) implies bµ,t0 = 〈Φ, u0(·, µ)〉.181

Our later definition of Πµ,tk+1 (given in subsection 5.3) will clarify that it is cheap to compute the182
inner-products appearing in the definition of Aµ,tk+1 and bµ,tk .183

The dimension of the approximation space Xnµ,tk is M , where we expect M � N = dim(XN ).184
Despite of this, in terms of the computational efficiency, we do not gain much by computing a ROM185
using residual minimisation (3.10). Indeed, currently, our ROM is more expensive than the FOM. This186
is mainly because for the ROM, we require an online computation of Aµ,tk+1 and bµ,tk , both of which187
require a loop over all the basis functions in Φ. In addition, one needs to solve the least-squares problem188
in (3.10). In comparison, the FOM only requires a computation of bµ,tk . Later in section 4, we reduce189
the computational cost of the minimisation problem using hyper-reduction.190
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4 HYPER-REDUCTION

Remark 3. Although some authors consider residual minimisation in the L2-norm (see [5, 23, 25]),191
recent results (see [1, 18]) indicate that using the L1-norm could provide better accuracy. Ease of im-192
plementation and computational efficiency motivates our choice of the L2-norm. Numerical results we193
present later might improve by using the L1-norm or some other metric. Comparing the performance of194
different norms is not the goal here.195

3.3 Summary of the algorithm: Algorithm 3.1 presents the offline phase of the algorithm.196
Line-1 is self-explanatory. Line-2 provides all the spatial transforms required to construct the Lagrange197
interpolation given in (3.6). Line-3 computes the offline phase of hyper-reduction and will be clearer198
later. Algorithm 3.2 presents the online phase of the algorithm. Line-1/3 are self-explanatory. Line-2199
performs the online phase of hyper-reduction and will be clearer later.200

Algorithm 3.1 Offline Phase: Algorithm for model reduction
1: For each Ii given in (3.1), compute the FOM for all µ ∈ {µ̂j}j=1,...,M using the time-evolution scheme

given above in section 2.
2: For each Ii, compute all the snapshots of the spatial transforms {ϕ(x, µ̂j , µ̂l, tk)}j,l=1,...,M for all
k ∈ {1, . . . ,K}. Details are discussed below in section 5.

3: Perform the offline phase of hyper-reduction. Details are discussed below in section 4.

Algorithm 3.2 Online Phase: Algorithm for model reduction
1: For a given µ, approximate {ϕ(x, µ, µ̂j , tk)}j=1,...,M using polynomial interpolation (3.6).
2: Perform the online phase of hyper-reduction. Details are discussed below in section 4.
3: Compute un(·, tk, µ) for all k ∈ {1, . . . ,K} using residual-minimisation and hyper-reduction. Details

are discussed in subsection 3.2 and in section 4.

Remark 4. One can treat the time variable the same as a parameter, and compute the spatial trans-201
form for a few time instances while performing a polynomial approximation (same as (3.6)) for others.202
This reduces the offline computation cost at the expense of some accuracy. For the simplicity of exposition,203
with an additional offline cost, we compute the spatial transform for all time instances.204

4. Hyper-reduction205

Let Pµ,tk+1 : RN → RN represent a (µ, tk+1)-dependent operator which is such that solving the206
following minimisation problem is (much) cheaper than solving the one given in (3.9)207

un,hyp(·, tk+1, µ) := arg min
w∈Xnµ,tk+1

‖Pµ,tk+1 Res(Πµ,tk+1w,Πµ,tku
n,hyp(·, tk, µ))‖RN .(4.1)

Above, Res is given in (3.8), and un,hyp(·, tk+1, µ) is an approximation to un(·, tk+1, µ). Following a208
collocation based approach, we consider209

Pµ,tk+1 = Pµ,tk+1 ,(4.2)

where210

Pµ,tk+1 ∈ RN×N ,
(
Pµ,tk+1

)
ij

:=
{

1, i ∈ Eµ,tk+1 , j = i,

0, else
.(4.3)

Thus, Pµ,tk+1 is a collocation matrix for the set Eµ,tk+1 ⊆ {1, . . . , N} and has zero columns for the indices211
in
(
Eµ,tk+1

)c, where (·)c represents the complement of a set. For simplicity, whenever it is clear from the212
context, we will remove the zero columns from Pµ,tk+1 . Let213

Nhyp
µ,tk+1

:= #Eµ,tk+1 ,(4.4)

where #(·) represents the number of elements in a set. For Nhyp
µ,tk+1

< N , with the above choice of Pµ,tk+1 ,214

we compute only the Nhyp
µ,tk+1

entries in Res. This reduces both, the cost of evaluating the residual and215
the cost of solving the least-squares problem (3.10). We refer to Eµ,tk+1 as a set of collocation points and216
compute it as follows. We emphasis that our computation of Eµ,tk+1 does not assume the specific form of217
the spatial transform considered later in (5.1).218
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4.1 Computation of the collocation points:

4.1 Computation of the collocation points: We divide the computation of Eµ,tk+1219
into an offline and an online stage. The offline and the online stage corresponds to line-3 and line-2220
of Algorithm 3.1 and Algorithm 3.2, respectively, and are outlined as follows.221

(i) Offline stage: Let {µ̃i}i=1,...,Mhyp ⊂ Iγ(µ) (see (3.1) for a definition of Iγ(µ)) be a set of param-222
eters that does not overlap with the set {µ̂i}i=1,...,M given in (3.5). The reason for considering223
non-overlapping sets is made clear below in remark 5. The value of Mhyp ≤ M is user-defined.224
Choosing Mhyp > M did not provide any additional benefit in our numerical experiments. We225
compute Eµ̃i,tk+1 by minimising a bound on the error226

Eµ̃i,tk+1 := ‖uN (·, tk+1, µ̃i)− un,hyp(·, tk+1, µ̃i)‖L2(Ω).(4.5)

(ii) Online stage: Let µ 6∈ {µ̃i}i=1,...,Mhyp ∪ {µ̂i}i=1,...,M be the parameter of interest. Then, with227
the spatial transforms ϕ(·, µ, µ̃i, tk+1), we account for transport in {Eµ̃i,tk+1}i=1,...,Mhyp . This228
finally provides us with Eµ,tk+1 .229

Offline stage: A bound for Eµ̃i,tk+1 follows from the result given below; similar result can be found230
in [9]. The result uses recursion and assumes the Lipschitz continuity of the operator Id +∆t×LN (·, µ),231
where LN (·, µ) is as given in (2.3). For the time-step restriction given in (2.4), the assumption of Lipschitz232
continuity is satisfied; see [10, 13] for further details. Note that the result holds independent of the choice233
of Pµ,tk+1 .234

Lemma 4.1. Let Id : XN → XN be the identity operator, and let LN (·, µ) be as given in (2.3).235
Assume that the operator Id +∆t × LN (·, µ) is Lipschitz continuous on XN with a Lipschitz constant236
C > 0 i.e, for all u, v ∈ XN it holds237

‖
(
u+ ∆t× LN (u, µ)

)
−
(
v + ∆t× LN (v, µ)

)
‖L2(Ω)≤ C‖u− v‖L2(Ω).

Let {v(tj)}j=1,...,K be a sequence in Xn, then it holds238

‖uN (·, tk+1, µ)− v(tk+1)‖L2(Ω)≤
k∑
j=0

Ck−j (cj + dj) ,(4.6)239

240

where k ∈ {0, . . . ,K − 1}, and241

(4.7)
cj := ‖Pµ,tj+1 Res

(
Πµ,tj+1v(tj+1),Πµ,tjv(tj)

)
‖RN ,

dj := ‖
(
Id−Pµ,tj+1

)
Res

(
Πµ,tj+1v(tj+1),Πµ,tjv(tj)

)
‖RN .

Proof. See Appendix A.242

Choosing v(tk+1) = un,hyp(·, tk+1, µ̃i) in (4.6), provides a bound for the error Eµ̃i,tk+1 given in (4.5). It is243
preferable to make this bound as small as possible. The definition of un,hyp(·, tk+1, µ), for a given Pµ,tk+1 ,244
minimises the ck’s appearing in (4.6). We choose the set Eµ̃i,tk+1 such that we minimise an upper bound245
on dk.246

To have an upper bound on dk, we make the following assumption. We assume that if the total247
number of collocation points is larger than M then irrespective of the choice of the collocation points,248
there exists a time-step size smaller than or equal to the bound given in (2.4) such that the solution249
un,hyp(·, tk, µ) is L2-stable. Equivalently, for a given grid size ∆x > 0, we assume that250

∃ 0 < ∆t ≤ ∆topt : ‖un,hyp(·, t, µ)‖L2(Ω)≤ C, ∀(t, µ) ∈ [0, T ]× P, Eµ,t ∈ E ,(4.8)

where E is a collection of all possible collocation points with size larger than M , and ∆topt is the upper-251
bound given in (2.4). remark 6 below further elaborates on the above assumption. Note that under the252
time-step restriction given in (2.4), the FOM also satisfies an estimate similar to the above [27].253

Using the above assumption, the upper bound on dk follows from the definition of Res given in (3.8),254
our choice of v(tk) and triangle’s inequality255

(4.9) d2
k ≤ C

‖(Id−Pµ̃i,tk+1)Aµ̃i,tk+1‖2F+‖(Id−Pµ̃i,tk+1)bµ̃i,tk‖2RN︸ ︷︷ ︸
=:E1

 .
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4 HYPER-REDUCTION

Above, Aµ̃i,tk+1 and bµ̃i,tk are as defined in (3.11), and ‖·‖F represents the Frobenius norm of a matrix.256
Let (a1, . . . , aN ) = ATµ̃i,tk+1

. We conclude that for the choice of Pµ̃i,tk+1 given in (4.2), E1 is minimum257
when we define Eµ̃i,tk+1 as258

(4.10) Eµ̃i,tk+1 := arg max
ω⊆{1,...,N},#ω=Nhypµ̃i,tk+1

∑
p∈ω

(
‖ap‖2RM+ (bµ̃i,tk)2

p

)
.

Remark 5. One can check that for µ ∈ {µ̃i}i=1,...,Mhyp ∩ {µ̂i}i=1,...,M , we have259

Res
(
Πµ,tk+1u

n,hyp(·, tk+1, µ),Πµ,tku
n,hyp(·, tk, µ)

)
= 0,

where k ∈ {0, . . . ,K − 1}. The above relation makes the bound on Eµ,tk+1 trivial therefore, we choose260
{µ̃i}i=1,...,Mhyp such that it does not overlap with {µ̂i}i=1,...,M .261

Remark 6. Presently, there lacks a theoretical justification for the assumption in (4.8). However,262
choosing Eµ̃i,tk+1 randomly, ensuring #Eµ̃i,tk+1 ≥ M and performing multiple runs of the ROM results263
in a solution that is bounded in L2(Ω). This indicates that a proof of (4.8) could be possible. For264
#Eµ̃i,tk+1 < M we have an under-determined least-squares problem (4.1), which, at least for our test265
cases, results in instability.266

Online stage: We compute Eµ,tk+1 in the online phase as follows. As µ deviates from µ̃i, the267
snapshot uN (·, tk+1, µ̃i) is transported along the spatial domain and we transport the entries in Eµ̃i,tk+1268
along with it. Since the spatial transform ϕ(·, µ̃i, µ, tk+1) captures the transport of uN (·, tk+1, µ) to269
uN (·, tk+1, µ̃i), we approximate Eµ,tk+1 by transforming every entry in Eµ̃i,tk+1 with ϕ(·, µ̃i, µ, tk+1). We270
do so as follows. Let yp denote the centroid of the mesh element Ixp . Every p ∈ Eµ̃i,tk+1 corresponds to271
a unique yp. Then, ϕ(yp, µ̃i, µ, tk+1) denotes the spatial location of a collocation point in Eµ,tk+1 . To get272
the collocation point corresponding to ϕ(yp, µ̃i, µ, tk+1), we define Υ : Ω→ N such that x ∈ IxΥ(x), where273
IxΥ(x) is the Υ(x)-th spatial element. Then, Eµ,tk+1 is given as274

Eµ,tk+1 ≈
Mhyp⋃
i=1

{
Υ(ϕ(yp, µ̃i, µ, tk+1)) : p ∈ Eµ̃i,tk+1

}
.(4.11)

There are two ways to compute ϕ(·, µ̃i, µ, tk+1): (i) compute the snapshots {ϕ(·, µ̃j , µ̃i, tk+1)}j=1,...,Mhyp275
offline and approximate ϕ(·, µ̃i, µ, tk+1) using the Lagrange interpolation (3.6); and (ii) use ϕ(·, µ̂i, µ, tk+1)276
(which we anyhow compute) to approximate ϕ(·, µ̃i, µ, tk+1). We use the second option because it is277
cheaper. To approximate ϕ(·, µ̃i, µ, tk+1), we assume that a spatial transform follows the following chain278
relation [30]279

ϕ(·, µ̃i, µ, tk+1) ≈ ϕ(·, µ̃i, µ̂i, tk+1) ◦ ϕ(·, µ̂i, µ, tk+1).(4.12)

Both ϕ(·, µ̃i, µ̂i, tk+1) and ϕ(·, µ̂i, µ, tk+1) then follow from the Lagrange interpolation in (3.6).280

Remark 7. From (4.11) we find that the size of Eµ,tk+1 is Mhyp × Nhyp
µ,tk+1

. However, in all our281

numerical experiments #Eµ,tk+1 ≈ N
hyp
µ,tk+1

, which implies a large overlap in the underlined sets shown in282
(4.11). This is expected when the spatial transform accurately approximates the transport in the snapshots.283

Remark 8. The above definition of Eµ̃i,tk+1 given in (4.10) requires both Aµ̃i,tk+1 and bµ̃i,tk . To284
compute bµ̃i,tk , one needs to solve the expensive least-square problem (3.10) for all µ ∈ {µ̃i}i=1,...,Mhyp .285
However, this computation is offline and is done only for a finite number of µ-values. This is (much)286
cheaper than solving the expensive least-squares problem (3.10) for every query parameter.287

4.2 Discussion: In [18] authors choose Eµ,tk+1 as the discrete empirical interpolation colloca-288
tion points of the residual. This approach has a few shortcomings. Firstly, it does not need to minimise289
the error bound in (4.9). Secondly, to choose Nhyp

µ,tk+1
number of collocation points, one requires at least290

Mhyp = Nhyp
µ,tk+1

number of snapshots of the residual and a singular-value-decomposition of the resulting291
snapshot matrix. This results in an expensive offline computation if the singular values decay slowly,292
which results in Nhyp

µ,tk+1
being large. In our method, the error bound in (4.9) is minimum by construc-293

tion. Moreover, the value of Mhyp and Nhyp
µ,tk+1

can be chosen independently. Even with Mhyp = 1, one294

can have a Nhyp
µ,tk+1

as large as possible.295
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Apart from the error Eµ,tk+1 defined in (4.5), we can define the following error that quantifies the296
accuracy lost by solving the hyper-reduced minimisation problem in (4.1) over the original one in (3.9)297

Êµ,tk+1 := ‖un(·, tk+1, µ)− un,hyp(·, tk+1, µ)‖L2(Ω).(4.13)

Let Ñµ,tk+1 = N −Nhyp
µ,tk+1

. As Ñµ,tk+1 → 0, we expect Êµ,tk+1 → 0. Unfortunately, there is an unavail-298

ability of a bound on Êµ,tk+1 that could prove its convergence with Ñµ,tk+1 . We leave the development of299

such a bound for future works, and later study the convergence of Êµ,tk+1 using numerical experiments.300

We speculate that it should be possible to bound Êµ,tk+1 in terms of E1 given in (4.9). In that case if301

E1 converges slowly then to achieve an acceptable accuracy, one would require a large value of Nhyp
µ,tk+1

.302
This would reduce the efficiency of our hyper-reduction. However, at least for linear problems, ensuring303
a decay in E1 is simple. Consider, for example, the linear advection equation ∂tu + ∂xu = 0. Since304
u(x, t) = u0(x− t), an appropriate choice of initial conditions ensures a decay in E1.305

One can choose Ptk+1 with the gappy-POD (or the DEIM [6]) approach by projecting the residual306
onto its POD-basis [2, 5]. This provides307

Ptk+1 = Utk+1(PTtk+1
Utk+1)†PTtk+1

,(4.14)

where Ptk+1 is the collocation matrix, (·)† denotes the Moore-Penrose inverse of a matrix, and Utk+1 ∈308

RN×N
hyp
tk+1 is a set of POD-modes for the snapshot matrix of residuals. Note that the collocation matrix309

Ptk+1 is not necessarily the same as that resulting from (4.11). The DEIM approach differs from ours in310
the following sense. Firstly, it assumes that the residual is well-approximated in a linear finite-dimensional311
space, which is the span of the POD basis. Secondly, the collocation matrix is computed offline with a312
greedy-iteration and is µ-independent. Note that for a non-linear approximation of the form (3.5), similar313
to the solution, the residual can also show a moving wave-type behaviour along the µ-space. This can314
result in (i) poor approximability of the residual in a linear space, and (ii) an ill-suited µ-independent315
collocation matrix Ptk+1 . Later, through numerical examples we demonstrate the moving wave-type316
behaviour of the residual and the problems that arise from it. Note that also the DEIM approach does317
not provide a bound for the error Êµ,tk+1 given above in (4.13).318

5. Computation of the spatial transforms319

We discuss the computation of ϕ(x, µ̂i, µ̂j , tk) appearing in (3.6). An algorithm to compute the320
spatial transform should provide321

(i) a ϕ(·, µ̂i, µ̂j , tk) for an arbitrarily large |µ̂i − µ̂j |;322
(ii) an invertible ϕ(·, µ̂i, µ̂j , tk).323

Choosing the parameter samples {µ̂j}j=1,...,M with a greedy-algorithm that has an arbitrary error toler-324
ance could result in an arbitrarily large |µ̂i − µ̂j |. Similar observation holds for other methods used to325
sample {µ̂j}j=1,...,M . That is why we need the first requirement. The second requirement is motivated326
by intuition. To elaborate, let uN (·, tk, µ̂j) represent the density of some fluid. Let ϕ(x, µ̂i, µ̂j , tk) be non-327
invertible, which implies the existence of a x0 and a x1 such that y = ϕ(x0, µ̂i, µ̂j , tk) = ϕ(x1, µ̂i, µ̂j , tk).328
Then, composing uN (·, tk, µ̂j) with ϕ(·, µ̂i, µ̂j , tk) results in the density at y being transported to two329
different locations x0 and x1, which is physically unacceptable.330

We satisfy the second requirement of the above two by choosing ϕ(x, µ̂i, µ̂j , tk) to be a shift in space331
i.e.,332

ϕ(x, µ̂i, µ̂j , tk) = Θ(x, c(µ̂i, µ̂j , tk)) where Θ(x, c) := x− c.(5.1)

Above, we still need to compute the shifts c(µ̂i, µ̂j , tk) ∈ Rd. Note that uN (Θ(x, c), t, µ) requires values333
from outside of Ω, which we prescribe as follows. We assume that there exists an ε ≥ ∆x such that the334
solution, for all time and parameter instances, stays constant inside [xmin, xmin + ε] and [xmax − ε, xmax].335
Equivalently,336

u(x, t, µ) =
{
U0(µ), ∀(x, t, µ) ∈ [xmin, xmin + ε]× [0, T ]× P,
U1(µ), ∀(x, t, µ) ∈ [xmax − ε, xmax]× [0, T ]× P,

(5.2)

where U0(µ), U1(µ) ∈ R. With the above assumption, if x− c < xmin, we set uN (x− c, t, µ) = U0(µ), and337
if x− c > xmax, we set uN (x− c, t, µ) = U1(µ). Note that the assumption is true for Riemann problems,338
and Cauchy problems with compactly supported initial data.339
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5 COMPUTATION OF THE SPATIAL TRANSFORMS

The above mentioned first requirement is ensured by computing a shift c(µ̂i, µ̂j , tk) for any given340
parameter difference |µ̂i − µ̂j |. When i = j, we choose c(µ̂i, µ̂j , tk) = 0. This ensures (3.4). For i 6= j, we341
compute c(µ̂i, µ̂j , tk) as follows. One way is to use the following minimisation problem that minimises342
the L2(Ω) error343

(5.3)
c(µ̂i, µ̂j , tk) = arg min

c∈[−nx∆x,nx∆x]
‖uN (Θ(·, c), tk, µ̂j)− uN (·, tk, µ̂i)‖L2(Ω)︸ ︷︷ ︸

=:R(c)

.

One can solve the above problem using a fixed-point iteration [18, 30]. However, the following problems344
arise. Firstly, the function R does not need to be convex, which could result in a fixed-point iteration345
providing a sub-optimal local minima. Secondly, because R can have flat regions, a fixed-point iteration is346
(very) sensitive to its initial guess and the step-size. For example, consider the following two characteristic347
functions348

uN (·, tk, µ̂j) = 1[0,1], uN (·, tk, µ̂i) = 1[2,3].(5.4)

The two functions are L2-orthogonal for c ∈ [0, 1], which results in R([0, 1]) =
√

2. Therefore, with an349
initial guess of c = 0 (without any additional regularisation) one will never move past the initial guess.350
Choosing |µ̂j − µ̂i| small enough ensures the strict convexity of the minimisation problem (5.3), but it is351
unclear how small should |µ̂j−µ̂i| be [30]. Moreover, at least for the above example, a shifted uN (·, tk, µ̂j)352
accurately approximates uN (·, tk, µ̂i) and therefore, decreasing |µ̂j − µ̂i| further is unnecessary. Indeed,353
uN (x− 2, tk, µ̂j) = uN (x, tk, µ̂i). Note that even if we can compute a unique shift using (5.3), it does not354
ensure that the discontinuities in uN (·, tk, µ̂i) and uN (·, tk, µ̂j) are aligned. Such an alignment is needed355
to accurately capture the shock speeds and locations.356

Remark 9. With our choice of the spatial transform (3.6), one can check that the chain relation in357
(4.12) simplifies to c(µ̃i, µ, tk+1) ≈ c(µ̂i, µ̃i, tk+1)− c(µ̂i, µ, tk+1).358

5.1 Computing spatial transforms using feature matching: For the above rea-359
sons, we do not use a fixed-point iteration to find the shift values. Rather, we find a shift such that it360
aligns a dominant feature between the two snapshots. We elaborate on what we mean by a dominant361
feature. A feature is user-defined and refers to a local structure in the solution that one wishes to capture.362
For example, in fluid flow applications, a feature could mean a shock, a rarefaction fan, a vortex etc. Out363
of all the features, the dominant feature is the one, aligning which, results in the minimum L2-distance364
between the snapshots. Note that although the definition of feature(s) is flexible, it should be such that365
for all (µ, t) ∈ P × [0, T ] the FOM contains at least one feature. Else, one ends up with no features to366
align, which results in no shift values.367

We consider a shock and a (strict) local minima/maxima in the solution as a feature. After some finite368
time (usually) solutions to non-linear hyperbolic problems develop shocks and it is desirable to capture369
these shocks accurately. For that reason we consider them as a feature. For a continuous initial data, it is370
possible that the solution does not contain a shock. This motivates us to consider a local minima/maxima371
in the solution as a feature. Moreover, since the absolute value of a solution is locally maximum near a372
local minima/maxima, we expect that aligning these local minima/maxima will significantly reduce the373
L2-distance between the two snapshots. With an appropriate choice of the initial data (or the space-time374
domain Ω × [0, T ]), we ensure that every snapshot has at least one shock or a local minima/maxima.375
Later, we present examples of such a situation.376

We cast the computation of a shift using feature matching as a minimisation problem. Let377
B(µ̂i, µ̂j , tk), which is a subset of [−nx∆x, nx∆x], represent a finite (µ̂i, µ̂j , tk)-dependent set that contains378
shifts that align all possible features between the snapshots uN (·, tk, µ̂j) and uN (·, tk, µ̂i). Then, following379
the above discussion, finding a shift through feature matching is equivalent to solving the following380
problem381

(5.5) c(µ̂i, µ̂j , tk) = arg min
c∈B(µ̂i,µ̂j ,tk)

R(c),

where R(c) is as defined above in (5.3). We assume that the size of B(µ̂i, µ̂j , tk), which we denote by382
#B(µ̂i, µ̂j , tk), is small enough. Then, we can cheaply solve the above problem using enumeration i.e.,383
we compute R(c) for all c ∈ B(µ̂i, µ̂j , tk) and pick the shift corresponding to the minimum value of R(c).384
We later elaborate on our assumption of #B(µ̂i, µ̂j , tk) being small. Below, we discuss how to compute385
B(µ̂i, µ̂j , tk).386
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5.2 Discussion:

Identification of features: Let yj denote the centroid of the mesh element Ixj . Let duj(tk, µ̂i)387
represent an approximation to the first-order space derivative in the j-th mesh element. We can compute388
such a derivative with (for example) central differences applied to cell-averages uN (yj , tk, µ). Define the389
ratio rj(tk, µ̂i) as390

rj(tk, µ̂i) := sgn(duj(tk, µ̂i)− duj−1(tk, µ̂i))
sgn(duj+1(tk, µ̂i)− duj(tk, µ̂i))

,

where sgn(·) represents a sign function. In B(µ̂i, tk) we collect the locations of the centroids of all those391
mesh-elements (i.e. Ixj ) for which rj(µ̂i, tk) < 0. Doing the same for uN (·, tk, µ̂j) provides us with the392
set B(µ̂j , tk). Thus, the sets B(µ̂i, tk) and B(µ̂j , tk) contains shock locations and the location of the local393
minima/maxima occurring in uN (·, tk, µ̂i) and uN (·, tk, µ̂j), respectively. Aligning all possible locations394
in these two sets provides us with (#B(µ̂i, tk)× (#B(µ̂j , tk)) number of shift values that we collect in the395
set B(µ̂i, µ̂j , tk). We then remove the repeated shifts occurring in B(µ̂i, µ̂j , tk), which provides us with396
the desired set.397

5.2 Discussion: In [23], B(µ̂i, µ̂j , tk) is a set of shifts that are integer multiples of ∆x and398
lie inside [−nx∆x, nx∆x]. Such a choice results in #B(µ̂i, µ̂j , tk) scaling with nx (or with ndx for d-399
dimensions), which leads to an expensive solution to (5.5). In contrast, for our choice of B(µ̂i, µ̂j , tk), if400
the FOM does not oscillate along the entire spatial domain or does not have a large number of shocks401
then we expect #B(µ̂i, µ̂j , tk) � nx. This is the case for all our numerical experiments. Moreover, for402
convergent FOMs, we expect that no new points are added to B(µ̂i, µ̂j , tk) beyond a certain nx.403

The minimisation problem (5.5) does not need to have a unique solution. Consider the two charac-404
teristic functions uN (·, tk, µ̂i) = 1[0,1] and uN (·, tk, µ̂j) = 1[2,4]. One can check that B(µ̂i, µ̂j , tk) = {2, 3},405
and that R (B(µ̂i, µ̂j , tk)) = {1, 1}. Clearly, R is a constant on B(µ̂i, µ̂j , tk). If minimising R (i.e. the406
L2-error) is the sole interest then both the shifts in B(µ̂i, µ̂j , tk) are equally acceptable. One can make a407
distinction between the two shifts by specifying additional quantities of interest. For example, the shifts408
c = 2 and c = 3 accurately capture the shocks at x = 2 and x = 4, respectively. Therefore, if one is409
interested in the shock at x = 2 then one must choose c = 2. In all our numerical experiments the410
solution is such that the minimisation problem (5.5) resulted in a unique solution, and we did not specify411
any additional quantity of interest.412

The spatial transform (5.1) has d-degrees of freedom, which are the d-components of the shift413
c(µ̂i, µ̂j , tk). With d-degrees of freedom, in a d-dimensional spatial domain, we accurately capture one414
dominant feature of the solution. To capture more than one feature, one requires additional degrees of415
freedom in ϕ(·, µ̂i, µ̂j , tk), which one can introduce with a higher-order polynomial (or Fourier-series) ex-416
pansion for ϕ(·, µ̂i, µ̂j , tk); see [18, 30]. One computes such a spatial transform by minimising a residual417
(see (5.3) above) with a fixed-point iteration, problems related to which are already discussed above.418
Moreover, it is unclear how to ensure the invertibility of such a spatial transform, which is undesirable.419
Another possibility to capture additional features could be to introduce spatial dependence in the shift.420
Such a shift would move different (spatial) ”parts” of the solution differently, allowing one to capture more421
than one feature. This would be similar to the monotonic rearrangement based interpolation considered422
in [22]. We hope to consider a spatially dependent shift in our future work.423

We present examples where the set B(µ̂i, µ̂j , tk) given in (5.5) is non-empty, or equivalently, scenarios424
where every snapshot has at least one shock or a local minima/maxima.425

Example 5.1. Consider linear advection ∂tu(·, ·, µ) + β(µ)∂xu(·, ·, µ) = 0. One can show that426
u(x, t, µ) = u0(x − β(µ)t). As a result, if u0(·, µ) has a discontinuity then so does u(·, ·, µ). Moreover,427
if u0(·, µ) has strict local minima/maxima at the points B ⊂ R then so does u(·, ·, µ) at the points428
{x+ β(µ)t : x ∈ B}.429

Example 5.2. Consider the Burger’s equation ∂tu(·, ·, µ)+ 1
2∂xu(·, ·, µ)2 = 0. If u0(·, µ) is discontin-430

uous and non-increasing then there exists a finite time before which the solution has a shock. If u0(·, µ)431
is smooth then either the solution develops a shock after some time or it remains smooth. Following the432
reasoning of the previous example, a smooth solution will preserve the strict local minima/maxima in the433
initial data.434

5.3 Projection Operator: We define the projection operator Πµ,tk : Xnµ,tk → X
N appearing435

in (3.9). Substituting the expression for the snapshots of spatial transform from (5.1) into the Lagrange436
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6 RELATION TO THE PREVIOUS WORKS

interpolation in (3.6), we find a Lagrange interpolation for the shift values437

c(µ, µ̂j , tk) ≈ cM (µ, µ̂j , tk) :=
M∑
i=1

li−1(µ)cM (µ̂i, µ̂j , tk).(5.6)

Let uN (·, tk, µ̂j) =
∑N
i=1 βi(tk, µ̂j)φi where βi(tk, µ̂j) are some expansion coefficients, and φi is given in

(2.1). Then, from the definition of ψjµ,tk (given in (3.5), we find

ψjµ,tk =
N∑
i=1

βi(tk, µ̂j)φi(Θ(·, cM (µ, µ̂j , tk))),

where Θ is as defined in (5.1). Let ω = cM (µ, µ̂j , tk)/∆x. Assume that ω ∈ Z, and that ω > 0. The438
construction for ω ≤ 0 is similar and is not discussed for brevity. We later discuss the case where ω 6∈ Z.439
One can show that for i ∈ {1, . . . , N −ω}, we have φi(Θ(·, ω∆x)) = φi+ω. This implies that when ω ∈ Z,440
we have441

ψjµ,tk =
N−ω∑
i=1

βi(tk, µ̂j)φi+ω +
ω∑
i=1

U0(µ̂j)φi
√

∆x.(5.7)

The underlined term of the above two follows from taking values from outside of Ω using (5.2). When442
ω 6∈ Z, we replace ω by bωc in the above expression. Thus, for ω ≥ 0, we define Πµ,tk as443

Πµ,tkψ
j
µ,tk

=
N−bωc∑
i=1

βi(tk, µ̂j)φi+bωc +
bωc∑
i=1

U0(µ̂j)φi
√

∆x.(5.8)

The above definition relies on shifting the indices of the basis functions φi, which we expect to be less444
expensive than computing L2 inner-products in an orthogonal projection from Xntk,µ to XN .445

Remark 10. Let aTj ∈ RN be the j-th column of the matrix Aµ,tk+1 given in (3.11). With Πµ,tk as446
give above, aTj has the following (easy to compute) expression447

aTj =

U0(µ̂j)
√

∆x, . . . , U0(µ̂j)
√

∆x︸ ︷︷ ︸
bωc−times

, β1(tk, µ̂j), . . . , βN−bωc(tk, µ̂j)


T

.(5.9)

6. Relation to the Previous Works448

With formal arguments we show the similarities and the differences between the present work and449
the works related to symmetry reduction [17, 19, 25]. Assume that we can decompose the solution to the450
evolution equation (1.1) as451

u(·, t, µ) = T (t, µ)f(t, µ).(6.1)

Above, T (t, µ) : X → X and f(t, µ) ∈ X , where X is the solution space to the evolution equation (1.1).452
We can interpret f(t, µ) as being representative of the ”shape” of u(·, t, µ), and the action of T (t, µ) being453
representative of the ”transport” in u(·, t, µ). With the above decomposition, approximating the solution454
is equivalent to approximating f(t, µ) and T (t, µ). One can assume that f(t, µ) is well-approximated in455
a linear space and the action of T (t, µ) is well-approximated in a non-linear space.456

In the present work (and also in [4, 18, 30]), we approximate the action of T (t, µ) by shifting (or trans-457
forming) the snapshots along the spatial domain and f(t, µ) in the span of the shifted (or transformed)458
snapshots. Equivalently, calibrating the manifold Mt to Mµ,t with spatial transforms approximates the459
action of T (t, µ), and a linear reduced basis approximation ofMµ,t approximates the evolution of f(t, µ).460
In [17, 19, 25], authors approximate the action of T (t, µ) by the action of a Lie-group and f(t, µ) using461
a POD/KL-expansion.462

Once we have an approximation space for T (t, µ) and f(t, µ), we need to compute the two quantities in463
their respective approximation spaces. This is where the present work differs from that in [17, 19] where,464
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before performing any approximation, authors derive a governing equation for f(t, µ) by substituting the465
above decomposition (6.1) into the evolution equation (1.1) and multiplying by T (t, µ)−1. This results466
in467

∂tf(t, µ) + T (t, µ)−1
∂tT (t, µ)f(t, µ) + T (t, µ)−1

L(T (t, µ)f(t, µ), µ) = 0.

After substituting the approximation for T (t, µ), which results from the so-called reconstruction equation,
one can reduce the above equation using any linear model order reduction technique. However, for an
efficient ROM, the underlined term needs to be simplified by assuming that L(·, µ) is invariant under the
action of T (t, µ). Equivalently,

T (t, µ)−1
L(T (t, µ)f(t, µ), µ) = L(f(t, µ), µ).

In the present work (and in [1, 18]), we do not treat the evolution of T (t, µ) and f(t, µ) separately.468
Rather, we substitute our approximation for T (t, µ) and f(t, µ) into the discretized evolution equation469
(2.3) that results in a residual. Minimisation of the residual provides us with our ROM. We reduce the470
computational cost of residual minimisation using hyper-reduction, which does not rely on any invariance471
property of the evolution operator.472

Evolution operators L(·, µ) of practical relevance are (mostly) only invariant under Galilean trans-473
formations i.e., under a rotation, a translation, and a uniform motion of space-time. Approximating the474
action of T (t, µ) through Galilean transforms of f(t, µ) is accurate for most Cauchy problems but could475
be ineffective for boundary value problems. For such problems, one requires an approximation (similar476
to [18, 30]) that is different than a Galilean transform, and which is not necessarily invariant with L(·, µ).477
This makes it crucial to develop ROMs that do not rely on the invariance properties of the evolution478
operator.479

In [21, 23], for a given µ = µ0, authors consider a snapshot matrix given as(〈
Φ, uN (·, t1, µ0)

〉
, . . . ,

〈
Φ, uN (·, tk, µ0)

〉)
,

and shift the spatial domain to induce a singular value decay in the snapshot matrix; recall that Φ480
contains the basis of XN . Although authors ensure a fast singular value decay, they do not vary the481
parameter, nor do they propose an algorithm to compute a solution using shifted POD-modes. Both of482
these problems are considered here.483

In [25], the authors consider a shifted KL-expansion. Similar to [17, 19], authors rely on the invariance484
of the evolution operator (mentioned above) the difference of which to our approach is discussed above.485
To compute the shifts, authors consider residual minimisation (5.3) and label the snapshot uN (·, tk, µ̂i)486
as the template. For all time instances, authors choose the template as the initial data which results in487
inaccuracy if, with time, the solution changes dramatically in comparison to the initial data. This is true488
for non-linear problems, and therefore our template (i.e. uN (·, t, µ̂j)) is both (t, µ)-dependent. For the489
same reason, the authors in [23] also consider time-dependent templates.490

As to our knowledge, the idea of calibrating the manifold Mtk first appeared in [4]. For Burger’s491
equation, authors consider a shifted POD-basis as the non-linear approximation space and compute the492
ROM using residual minimisation. The shifts are computed iteratively and online, the computational493
cost of which is unclear. To speed-up residual minimisation, authors approximate the L2 inner-products494
appearing in the residual, which is different from minimising the residual on a set of collocation points.495

7. Numerical Experiments496

We consider the following two different test-cases. The details of spatial and temporal discretization497
are test-case dependent, and are discussed later.498

(i) Test-1 (1D Linear advection): Linear one-dimensional advection equation with parameterised499
advection speed500

(7.1) ∂tu(·, ·, µ) + β(µ)∂xu(·, ·, µ) = 0, on Ω× [0, T ].

We consider β(µ) = exp(µ)/5, and choose P ∈ [1, 3]. We set Ω = [0, 4] and T = 0.8. As the501
initial data we consider502

u0(x) =

exp
(
−1/

(
1−

(
x−δ1
δ2

)2
))

,
∣∣∣x−δ1
δ2

∣∣∣ < 1

0, else
.(7.2)

One can check that for δ1 = 0.5 and δ2 = 0.2, u0 is smooth and compactly supported inside Ω.503
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(ii) Test-2 (1D Wave equation): One dimensional wave-equation with parameterised wave speed504

(7.3) ∂t

(
u(1)(·, ·, µ)
u(2)(·, ·, µ)

)
+A∂x

(
u(1)(·, ·, µ)
u(2)(·, ·, µ)

)
= 0, on Ω× [0, T ], where A =

(
0 1
µ2 0

)
.

We choose P = [1, 3], Ω = [−2, 2] and T = 0.45. Our initial data is505

u
(1)
0 (x, µ) = sin(2π × x)× 1[−0.5,0.5], u

(2)
0 (x, µ) = 0.

Although the above PDE is a system of equations, we write it as a system of two indepen-506
dent scalar conservation laws. To each of these conservation laws we independently apply the507
framework developed in the earlier sections. The details are discussed later.508

(iii) Test-3 (2D Burger’s equation): Two dimensional Burger’s equation with parameterised509
initial data510

(7.4) ∂tu(·, ·, µ) + 1
2∂xu(·, ·, µ)2 + 1

2∂yu(·, ·, µ)2 = 0, on Ω× [0, T ].

We choose P = [1, 3], Ω = [0, 1] and T = 0.8. The initial data is given as511

u0(x, µ) =

µ× exp
(
−1/

(
1−

(
‖x−δ1‖
δ2

)2
))

, ‖x−δ1‖
δ2

< 1

0, else
.(7.5)

We set δ1 = (0.5, 0.5)T and δ2 = 0.2. Note that the above initial data is the multi-dimensional512
version of the one considered above in (7.2).513

In the following discussion, with S-ROM (snapshots based linear ROM) and SS-ROM (shifted snapshots514
based non-linear ROM) we refer to a ROM computed using the approximation space Xntk and Xnµ,tk ,515
respectively. Here, Xntk is the approximation space based on dictionaries defined as [1]516

Xntk := span{uN (·, tk, µ̂j) : j ∈ {1, . . . ,M}}.(7.6)

For a given µ ∈ P, we quantify the accuracy of a ROM with the space-time L2−error517

EROM (µ) := ‖uN (·, ·, µ)− un(·, ·, µ)‖L2(Ω×[0,T ]),(7.7)

where unµ could result either from S-ROM or SS-ROM. We consider the same parameter samples {µ̂i}i=1,...,M518
for both the methods.519

We implement our method in matlab2018a. To solve the least-squares problem (3.9) we use the520
matlab function lsqminnorm. None of the online computations use parallelization. All the simulations521
are run on a computer with two Intel Xeon Silver 4110 processors, 16 cores each and 92GB of RAM.522

7.1 Test-1: We choose a constant time-step size of ∆t = 4/(nx × β(3)), which satisfies (2.4)523
and ensures the stability of the FOM. Although not proven, the same time-step was sufficient to ensure524
the stability of the solution resulting from residual minimisation (3.9). Recall that nx is the number of525
spatial elements and its value is given later.526

Study of shift computation: Consider two parameter instances µ̂1 = 1 and µ̂2 = 3. The exact527
solution to linear advection (7.1) satisfies u(x, t, µ) = u0(x − β(µ)t). Therefore, u(x, t, µ̂2) = u(x −528
cex(µ̂2, µ̂1, t), t, µ̂1) where cex(µ̂2, µ̂1, t) represents the exact shift value given as529

cex(µ̂2, µ̂1, t) := (β(µ̂2)− β(µ̂1))× t.(7.8)

Let c(µ̂2, µ̂1, tk) denote the shift resulting from the minimisation problem (5.5) with B(µ̂2, µ̂1, tk) com-530
puted using feature matching as described in section 5. We label such a B(µ̂2, µ̂1, tk) as Bfm. Fig 2a531
shows the error |cex(µ̂2, µ̂1, tk)− c(µ̂2, µ̂1, tk)| computed with nx = 103. The error is either zero or equal532
to the grid-size 4/nx. This is acceptable because all the shift values in Bfm are integer multiples of nx.533

Instead of Bfm, we can choose B(µ̂2, µ̂1, tk) to be B∆x that contains shifts that are integer multiples534
of ∆x and lie inside [−nx∆x, nx∆x]. Note that the set B∆x is also used in [23] for shift computation.535
The size of B∆x scales with nx whereas that of Bfm is independent of nx, which contains the location of536
a single local maxima in u0. Therefore, as nx increases, using Bfm instead of B∆x results in a significant537

14
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speed-up while solving the minimisation problem (5.5). The speed-up is shown in Fig 2b. For smaller538
values of nx, using Bfm is more expensive than B∆x because Bfm requires an approximation to the539
derivative of the solution, which dominates the cost for a small nx.540

There are time instances beyond which uN (·, tk, µ̂1) and uN (·, tk, µ̂2) are L2-orthogonal. As mentioned541
earlier, L2-orthogonality is problematic for fixed-points algorithms that solve (5.3) because it results in542
flat regions in the residual R given in (5.3). However, the enumeration based approach does not rely on543
a fixed-point iteration and provides a solution despite of the L2-orthogonality.544
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Figure 2: Results for test-1. (b) the time variation of the error in shift computation; (c) speed-up in shift
computation. Fig-(b) has a y-axis on a log-scale.

Comparison to S-ROM: We study the error EROM , defined in (7.7), resulting from SS-ROM and545
S-ROM. We choose nµ = 4 in (3.1) and M = 2 in (3.6) which results in a piecewise linear approximation546
for the spatial transform. Moreover, nµ = 4 results in four parameter elements which we choose uniformly547
as548

I1 = [1, 1.5], I2 = [1.5, 2], I3 = [2, 2.5], I4 = [2.5, 3].(7.9)

With M = 2 we need two parameter samples in each of the parameter elements. We let the endpoints of549
the parameter elements to be these parameter samples. At 45 uniformly sampled points inside P, Fig 3a550
compares the error EROM (µ) resulting from SS-ROM and S-ROM.551

We first understand the result for SS-ROM. Let µ̂1 and µ̂2 be the sample parameters that correspond to552
the endpoints of some Iγ(µ). See (3.2) for a definition of γ(µ). Let cex(µ, µ̂j , tk) be as given in (7.8). Let553
cex,M (µ, µ̂j , tk) be the same as the Lagrange interpolation cM (µ, µ̂j , tk) given in (5.6) but with c(µ̂i, µ̂j , tk)554
replaced by cex(µ̂i, µ̂j , tk). By triangle’s inequality, we can bound the error |cM (µ, µ̂j , tk)− cex(µ, µ̂j , tk)|555
as556

(7.10)
|cM (µ, µ̂j , tk)− cex(µ, µ̂j , tk)|≤|cex,M (µ, µ̂j , tk)− cex(µ, µ̂j , tk)|

+ |cex,M (µ, µ̂j , tk)− cM (µ, µ̂j , tk)|.

Our previous study shows that |c(µ̂i, µ̂j , tk) − cex(µ̂i, µ̂j , tk)| is O(∆x), which implies the same for557
|cex,M (µ, µ̂j , tk)−cM (µ, µ̂j , tk)|. Therefore, ignoring errors from spatial discretization and using standard558
error bounds for Lagrange interpolation, we find559

(7.11)
|cM (µ, µ̂j , tk)− cex(µ, µ̂j , tk)|≤|cex,M (µ, µ̂j , tk)− cex(µ, µ̂j , tk)|

≤K × (µ− µ̂1)× (µ̂2 − µ)× |β′(ξ)|,

where ξ ∈ Iγ(µ), K is a positive constant independent of µ and M , and β′(ξ) = exp(ξ)/5.560
From the bound in (7.11), two conclusions follow. Firstly, for a given γ(µ), the bound is maximum at561

the midpoint µ = (µ̂1 + µ̂2)/2. Secondly, for a given µ− µ̂1 (or equivalently µ̂2−µ), exp(ξ) increases with562
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Parameter element 1 2 3 4
Error ratio (Min/Max) 2.2/4.0 2.0/5.50 3.0/5.6 1.7/4.4

Table 1: Let e1(µ) and ẽ1(µ) denote the value of EROM (µ) computed with S-ROM and SS-ROM, respectively.
Then, the maximum error ratio in the i-th parameter element Ii is ‖e1‖L∞(Ii)/‖ẽ1‖L∞(Ii). Similarly,
one can define the minimum error ratio.

ξ and since ξ increases with γ(µ), the bound increases with γ(µ). We expect the bound for EROM (µ)563
resulting from SS-ROM to behave the same as the above error bound; similar results can be found in [30].564
The result in Fig 3a corroborates our expectation. The error EROM is the maximum at the midpoint of565
every parameter element, and, for a given (µ− µ̂1), the error increases with γ(µ).566

Solution from S-ROM accurately approximates uN (·, tk, µ) if it is not dominated by transport with567
respect to the snapshots uN (·, tk, µ̂1) and uN (·, tk, µ̂2). In our context, the shift (β(µ)−β(µ̂1))t captures568
the transport of uN (·, tk, µ̂1) to uN (·, tk, µ). Therefore, we expect the error EROM (µ) from L-ROM to be569
behave as570

min{β(µ)− β(µ̂1), β(µ̂2)− β(µ)},(7.12)

where β(µ) = exp(µ)/5. Similar to the bound in (7.11), for a given γ(µ), min{exp(µ)−exp(µ̂1), exp(µ̂2)−571
exp(µ)} is the maximum at µ = ln(exp(µ̂1)/2 + exp(µ̂2)/2) resulting in EROM (µ) having a local maxima572
at this point. Note that for our parameter domain, these points of local maxima are close to the mid-573
points of Iγ(µ). Moreover, for a given (µ− µ̂1), min{exp(µ)− exp(µ̂1), exp(µ̂2)− exp(µ)} increases with574
γ(µ) resulting in EROM (µ) increasing with γ(µ).575

The maximum and the minimum error from the S-ROM, in each of the parameter elements, is at least576
3 and 1.5 times higher than that from SS-ROM, respectively. Ratio of the maximum/minimum value of577
the error from the two methods is given in Table 1. The shifting in SS-ROM calibrates the snapshots578
that results in its higher accuracy as compared to S-ROM. Consider Fig 3d, which shows the ROM for579
µ = 2.75 computed with snapshots taken fromMtk . After (approximately) t = 0.2, the snapshots become580
L2(Ω)-orthogonal, which results in two wave-fronts in the ROM moving with different speeds. These two581
wave-fronts correspond to the two spatially disjoint rays seen in Fig 3d, and their speeds correspond to582
the (x, t)-slopes of these rays. They miss-represent the single wave front in the FOM (see Fig 3b), which583
has a wave speed in between of the two wave-fronts. In contrast, the snapshots from Mµ,tk accurately584
capture the single wave-front in the FOM; see Fig 3c.585

Convergence with (nµ,M): For different values of nµ (defined in (3.1)) and M (defined in (3.6)),586
we compare the error ‖EROM‖L∞(P) resulting from SS-ROM and S-ROM. We start with nµ = 1 and M = 2,587
and perform five uniform refinements of the parameter domain where we increase each nµ and M by one.588
To estimate ‖EROM‖L∞(P), we consider 150 uniformly placed samples inside P. We choose nx = 2×10−3.589

The results are shown in Fig 4a. Clearly, the error from SS-ROM appears to converge to zero much590
faster in comparison to the error from S-ROM. As studied above, the error from SS-ROM includes the error591
in shift computation that results from spatial discretization. Therefore, under a further increment of nx,592
it might be possible to get error values lower than those reported in Fig 4a.593

Study of hyper-reduction: Let the parameter elements be as given in (7.9). We fix µ to 2.75594
and choose nx = 103. We compute the set {Eµ̃i,tk}i=1,2,k=1,...,K given in (4.10) for µ̃1 = 2.625 and595
µ̃2 = 2.8750. Both µ̃1 and µ̃2 belong to I4 and not to {µ̂i}i=1,2. Using {Eµ̃i,tk}i=1,2,k=1,...,K , we estimate596
the set {Eµ,tk}k=1,...,K using the relation in (4.11). Let Nhyp

µ̃i,tk
be as given in (4.4). We choose the same597

Nhyp
µ̃i,tk

for all time instances and for all µ̃i’s. We denote this Nhyp
µ̃i,tk

by Nhyp. Starting with Nhyp = 5,598
we increment it by Nδ = 5 till it reaches 200. Note that a value for Nhyp implies that #Eµ̃i,tk = Nhyp.599
Since Eµ,tk is a union over the elements of Eµ̃i,tk (see (4.11)), it is not necessary that #Eµ,tk = Nhyp. To600
measure the deviation of #Eµ,tk from nx, we define601

Ñ := nx −
∑K
k=1 #Eµ,tk
K

.(7.13)602
603

The minimum value of Ñ is zero and at this minimum value, for all time instance, #Eµ,tk = nx i.e., we604
select all the grid-points as our collocation points.605
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Figure 3: Results for test-1. (a) EROM , given in (7.7), resulting from S-ROM and SS-ROM. (b) FOM, (c)
SS-ROM, and (d) S-ROM for µ = 2.75. Fig-(a) has a y-axis on a log-scale.
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Figure 4: Results for test-1. Error decay under (nµ,M)-increment. Y-axis on a log-scale.

Let Êµ,tk be as given in (4.13). As Ñ → 0, we expect maxk∈{1,...,K} Êµ,tk → 0. Fig 5a shows the606

convergence of maxk∈{1,...,K}Eµ,tk with Ñ . For the first few values of Ñ , maxk∈{1,...,K} Êµ,tk converges607

slowly. However, (approximately) below Ñ = 900, maxk∈{1,...,K} Êµ,tk converges fast and at a rate that608
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is close to 200 with respect to Ñ . Already with Ñ = 900, we reach an error value of O(10−4). Note609
that Ñ = 900 corresponds to an average of nx − Ñ = 100 collocation points per time-step, which is 10%610
of the total grid-points. Recall that for µ = 2.75 the error between the ROM and the FOM is O(10−2)611
therefore, an error of O(10−4) from hyper-reduction is acceptable.612

For all the choices of Nhyp, #Eµ,tk stays close to Nhyp implying a coincidence of most of the points613
in the union (4.10). Thus, even with a single parameter sample µ̃1, the set Eµ,tk remains almost the same614
and we can get the same results as reported here. For the first few times-steps, Fig 5b shows some of615
the entries in Eµ,tk for Nhyp = 5. Similar to the solution (see Fig 3b), the collocation points shift to616
the right as time progresses and follow the moving wave-front of the solution. Note that the shift in the617
collocation points is not the same for all time-steps. This results from an error in shift computation,618
which is of O(∆x), and from the error in approximating c(µ, µ̃i, tk) in steps remark 9. At the expense619
of some offline cost, one can remove the later source of error by computing the shifts c(µ, µ̃i, tk) using620
Lagrange interpolation.621

We compare a gappy-POD/DEIM approximation of the residual to our approach. Such a DEIM-622
approximation results in the operator Ptk+1 given in (4.14). Here, for simplicity of notation, we suppress623
the projection operator in Res. We compute the residual Res(un(·, tk+1, µ), un(·, tk, µ)), given in (3.8),624
for 100 equally spaced parameter points inside I4. Denoting these points by {µ̄i}i=1,...,100, we define the625
snapshot matrix626

Utk+1 := (Res(un(·, tk+1, µ̄1), un(·, tk, µ̄1)), . . . ,Res(un(·, tk+1, µ̄100), un(·, tk, µ̄100))) .(7.14)

For every residual Res(un(·, t, µ̄1), un(·, t, µ̄1)), we can define a piecewise constant function res(x, µ, t) as627

res(·, t, µ) := 〈Res(un(·, t, µ), un(·, t, µ)),Φ〉RN ,(7.15)

where Φ is a vector containing all the basis functions of a FOM and is given in (2.1). For t = 0.8 and628
µ ∈ I4, res(·, t, ·) is shown in Fig 6a. We scale all the values with ‖r(·, t, ·)‖L∞(Ω×P). Clearly, similar629
to the solution (see Fig 3b), which shifts to the right as t-increases, the residual also shifts to the right630
as µ-increases. This results in a slow decay in the singular values of Utk+1 . Fig 6b shows these singular631
values for tk+1 = 0.8. Although not shown in the plot, the decay gets slower as time progresses.632

With a greedy-algorithm we compute the collocation points Etk+1 corresponding to the collocation633
matrix Ptk+1 given in (4.14). Details of the greedy-algorithm can be found in [5]. We perform 5 greedy634
iteration and in each of the iteration, we select 20 collocation points. This results in a total of 100635
collocation points, which is equivalent to choosing Nhyp = 100. Owing to the slow decay of singular636
values of Utk+1 , we choose Utk+1 appearing in (4.14) as all the POD modes of Utk+1 .637

Fig 6c shows the collocation points for t = 0.8, over-plotted on the residual for (µ, t) = (2.9, 0.8). The638
greedy-algorithm chooses points that are outside of the support of the residual while leaving out points639
where the residual is still non-zero. For the case shown in Fig 6c, almost 30% of the collocation points640
lie outside of the residual’s support. This is because the greedy-algorithm selects the same collocation641
points for all the µ-values and does not adapt them to accommodate for a shifted residual. Therefore,642
we expect the error Êµ,tk+1 from a DEIM approximation to decay slowly with Ñ = nx − Nhyp. This643
is also expected from the slow singular value decay of the snapshot matrix Utk+1 . In our approach, we644
shift the collocation points to the right with the solution. As a result, these points only populate the645
support of the residual. This is shown in Fig 6c. For both the DEIM approximation and our approach,646
we compute the error maxk∈{1,...,K} Êµ,tk at 45 uniformly placed parameter points inside I4. For the647
reasons mentioned above, the DEIM approximation has an error that is at least O(104) of our approach.648

7.2 Test-2: Using the eigenvalue decomposition of the matrix A, we can express the wave-649
equation (7.3) as650

∂t

(
w(+)(·, ·, µ)
w(−)(·, ·, µ)

)
+
(
µ 0
0 −µ

)
∂x

(
w(+)(·, ·, µ)
w(−)(·, ·, µ)

)
= 0,(7.16)

where w(±) are the characteristic variables. We reduce the above two equations independently using the651
framework discussed in earlier sections.652

To account for the error in w(±)(·, ·, µ), we modify the error EROM (µ) given in (7.7) to653

(EROM (µ))2 = ‖w(+),N (·, ·, µ)− w(+),n(·, ·, µ)‖2L2(Ω×[0,T ])+‖w(−),N (·, ·, µ)− w(−),n(·, ·, µ)‖2L2(Ω×[0,T ]).

(7.17)
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7.3 Test-3:
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Figure 5: Results for test-1. (a) convergence of maxk∈{1,...,N} Êµ,tk with Ñ for µ = 2.75; (b) entries of
Eµ,tk for the first few time steps. Fig-(a) has a y-axis on a log-scale.

Above, w(±),N (·, ·, µ) and w(±),n(·, ·, µ) represent the FOM and the ROM of w(±)(·, ·, µ), respectively.654
We choose nx = 103, ∆t = 4/(nx × 3), nµ = 1 in (3.1), and M = 2 in (3.6). This results in a piecewise655
linear approximation for the spatial transform. nµ = 1 results in a single parameter element given as656
I1 = [1, 3]. We let µ̂1 = 1 and µ̂2 = 3, where µ̂i are as given in (3.5).657

We compute EROM at 45 uniformly placed parameter points different from the parameter samples µ̂1658
and µ̂2. The error values at these parameter points resulting from SS-ROM and S-ROM are show in Fig 7a.659
Similar to the previous test case, SS-ROM performs much better than S-ROM and results in an error that660
is at least an order of magnitude lower than that resulting from S-ROM. The governing equations for w+661
and w− (given in (7.16)) are the same as the linear advection equation (7.1) with the advection speeds662
β+(µ) = µ and β−(µ) = −µ, respectively. Therefore, the explanation for the qualitative behaviour of the663
error is similar to the previous test case, and follows from the bound in (7.11) and (7.12).664

The two transport modes of the current problem are shown in Fig 7b. In SS-ROM, the shifting of665
snapshots results in an accurate approximation of the two transport modes, see Fig 7c. In contrast, the666
result from S-ROM is a linear combination of two snapshots and since each of these snapshots have two667
distinct transport modes, their linear combination results in four distinct transport modes. These four668
transport modes are observable in Fig 7d after (approximately) t = 0.3. Results from hyper-reduction669
are similar to the previous test case and are not discussed for brevity.670

7.3 Test-3: The previous test cases were one dimensional for which a FOM is already efficient.671
This makes it difficult to compare the efficiency of the FOM to that of the ROM, which we do so with672
the current test case. This test case also brings out a limitation of our method, which we discuss in673
detail later. We set nµ = 1 in (3.1) and M = 2 in (3.5). As sample parameters we choose µ̂1 = 1 and674
µ̂2 = 3. For spatial discretization we choose nx = 200, which results in a spatial grid with 200 × 200675
elements. For temporal discretization we choose ∆t = 10−3. Previous test cases show that choosing676
Nhyp = 0.1×ndx number of collocation points for hyper-reduction provides acceptable results. Motivated677
from this observation we choose Nhyp = 4000. As sample parameters for hyper-reduction we choose678
µ̃1 = 1.7 and µ̃2 = 2.7, both of which do not belong to {µ̂i}i=1,2. To study the error resulting from the679
ROM and to analyse its performance, we compute the ROM for all µ ∈ {1.2, 1.4, . . . , 2.8}. For computing680
the results from S-ROM, we do not use any hyper-reduction.681

We define the speed-up S as682

S := run-time of the FOM
run-time of the online phase of the ROM .

Recall that the details of the online phase of SS-ROM are given in Algorithm 3.2. For SS-ROM, this speed-683
up is shown in Fig 8a. The speed-up is atleast 400, and results from introducing the operator Pµ,tk+1684
in the residual minimisation (4.1), which reduces the cost of both, evaluation of the residual and then685
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7 NUMERICAL EXPERIMENTS
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Figure 6: Results for test-1. (a) The residual res(·, t, ·) given in (7.15) for µ ∈ I4, x ∈ Ω, and tk = 0.8.
(b) Singular values of the matrix Utk+1 given in (7.14) for tk+1 = 0.8. (c) The location of the collocation
points computed with a greedy DEIM approach and the current approach over-plotted on the residual for
µ = 2.9 and t = 0.8. (d) Comparison of maxk=1,...,K Êµ,tk . Fig-(b) and (d) have a y-axis on a log-scale.

its minimisation. Although we choose the same Nhyp and ∆t for all parameter samples, the speed-up is686
not constant along P. We provide the following explanation. The set of collocation points Eµ,tk (given687
in (4.11)) is a union over the set in {Eµ̃i,tk}i=1,2, where the size of each of the sets is Nhyp. Taking a688
union results in #Eµ,tk that is (in practice) slightly different from Nhyp and that changes with (µ, t).689
This results in the speed-up being non-constant along P.690

Fig 8b compares the error EROM (µ) between SS-ROM and SS-ROM. Similar to the previous test cases,691
error from both the methods drops close to the endpoints of the parameter domain and is maximum close692
the the mid-point. The error resulting from S-ROM is atleast 3.5 times higher than that resulting from693
SS-ROM. Superior performance of SS-ROM results from shifting the snapshots and is also observed in the694
previous test case.695

As time progresses, the solution develops a shock. A part of the shock can be seen in the cross-section696
(along x = y) of the solution shown in Fig 9a. SS-ROM considers a span of shifted snapshots with a shift697
that aligns shocks between the snapshots. As a result, SS-ROM accurately captures the shock location, see698
Fig 9a. In contrast, S-ROM has the so-called staircase effect and wrongly captures the shock location. This699
results from approximating the solution in a span of non-shifted snapshots with each snapshot having a700
different shock location.701
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7.4 Limitations:
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Figure 7: Results for test-2. (a) EROM , given in (7.17), resulting from S-ROM and SS-ROM. (b) FOM,
(c) SS-ROM and (d) S-ROM of u(1)(·, ·, µ) for µ = 1.5. Fig-(a) has a y-axis on a log-scale. The results are
similar for u(2)(·, ·, µ).

7.4 Limitations: The previous test case brings out a drawback of our method. The support702
of the initial data u0(·, µ) given in (7.5) does not change with µ. This results in the solution having a703
support, a part of the boundary of which, does not change with µ. A part of this boundary is shown704
in Fig 9a around x = 0.36. We refer to this location as the starting location of the support. Despite of705
a difference in the shock locations, the starting location of the support is the same for every snapshot.706
Therefore, S-ROM captures this starting location accurately. However, because we shift the snapshots in707
SS-ROM, we capture the starting location of the support inaccurately.708

The limitation of the method becomes clearer with the following example. Consider the one-709
dimensional Burger’s equation, which is the same as (7.4) without the y-derivative, with the initial710
data711

u0(x) =


µ exp

(
−1/

(
1−

(
x−δ1
δ2

)2
))

,
∣∣∣x−δ1
δ2

∣∣∣ < 1

− exp
(
−1/

(
1−

(
x+δ1
δ2

)2
))

,
∣∣∣x+δ1
δ2

∣∣∣ < 1

0, else

.(7.18)

We let δ1 = 0.5 and δ2 = 0.2. Let Ω = [−2, 2] and T = 1.0. Let P = [1, 3] be discretized with one712
parameter element i.e., nµ = 1 in (3.1). Moreover, let M = 2 in (3.5). Let Ω be discretized with nx = 103713
elements, and let ∆t = 10−3.714

The FOM has two shocks, both of which are shown in Fig 10a for µ = 2 and t = T . Since in SS-ROM715
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Figure 8: Results for test-3. (a) Speed-up resulting from SS-ROM; and (b) EROM resulting from S-ROM
and SS-ROM. Fig-(b) has a y-axis on a log-scale.
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Figure 9: Results for test-3. FOM and the ROM along the cross-section x = y for µ = 2.6 and t = 0.8.

the snapshots shift in one direction, we capture only one of the shocks accurately. Aligning the shock716
on the right results in a lower L2 error (i.e., R in (5.3)) than aligning the shock on the left. Therefore,717
SS-ROM accurately captures the shock on the right but has a staircase effect at the shock on the left.718

Since the negative part of u0(·, µ) is independent of µ, the shock location on the left is µ-independent.719
Therefore, S-ROM captures it accurately. However, it is highly inaccurate at the right shock and shows the720
staircase effect. Despite the inaccuracy from SS-ROM at the left shock, it has an L2-error of 0.06 that is721
less than the L2 error of 0.08 from S-ROM. However, the benefit of using SS-ROM over S-ROM is not much,722
and both the ROMs perform poorly.723

8. Conclusion724

We considered a transformed snapshot based non-linear approximation for solution manifolds of hy-725
perbolic equations. To compute the ROM, we used residual minimisation. Projecting the residual onto726
a low-dimensional linear space, which is usually a span of POD-basis, usually makes the residual min-727
imisation efficient. However, computational examples showed that such a projection could be ineffective728
for hyperbolic problems. Broadly speaking, this is because (similar to the solution) the residual has a729
moving wave-type behaviour. To circumvent a projection, we considered hyper-reduction that evaluates730
and minimises the residual on a subset of mesh-elements or the so-called collocation points. For the731
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Figure 10: Results that show the limitation of SS-ROM. Computed with the one-dimensional Burger’s
equation with the initial data as given in (7.18). The solutions are for µ = 2 and t = 1.

computation of the collocation points, we considered an offline and an online stage. Offline, we computed732
the collocation points for a set of training parameters by minimising a bound on the L2-error of our733
ROM. Moreover, online, we transported the set of collocation points computed offline.734

As an instance of our non-linear approximation space, we considered a span of shifted snapshots with735
local in time and parameter shifts. We considered shifts that align shocks and local minima/maxima in736
the solution while minimising the L2-error between the shifted snapshots. We were efficient with our shift737
computation for solutions that do not have a very large number of shocks and local minima/maxima.738
Moreover, for a certain class of problems, our algorithm provides a shift between snapshots that have739
arbitrarily separated parameters.740

With numerical experiments, we compared the accuracy of our non-linear ROM to a ROM that uses741
the span of snapshots as its approximation space. The non-linear ROM had an L2-error that was 2 to 10742
times lower than that resulting from a snapshots based ROM. For a test-case involving the 2D Burger’s743
equation, as compared to the FOM, the non-linear ROM showed a speed-up of at least 400. The speed-up744
was a result of hyper-reduction, which reduced the cost of both the evaluation and the minimisation of745
the residual.746
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Appendix A. Proof of Lemma 5.1. By definition751 〈
Φ,Πµ,tj+1v(tj+1)

〉
= Res(Πµ,tj+1v(tj+1),Πµ,tjv(tj)) +

〈
Φ,Πµ,tjv(tj)

〉
+ ∆t

〈
Φ, LNµ (Πµ,tjv(tj))

〉
.

where j ∈ {1, . . . ,K − 1}. The result for j = 0 is trivial. Also,752 〈
Φ, uN (·, tj+1, µ)

〉
=
〈
Φ, uN (·, tj , µ)

〉
+ ∆tj

〈
Φ, LNµ (uN (·, tj , µ))

〉
Subtracting the above two relations, taking the RN norm on both sides and using triangle’s inequality753
provides754

(A.1)
‖
〈
Φ, uN (·, tj+1, µ)−Πµ,tj+1v(tj+1)

〉
‖RN≤

∥∥〈Φ, uN (·, tk, µ)−Πµ,tjv(tj)
〉

+∆tj
〈
Φ, LNµ (uN (·, tj , µ))− LNµ (Πµ,tjv(tj))

〉∥∥
RN

+ ‖Res(Πµ,tj+1v(tj+1),Πµ,tjv(tj))‖RN .
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Using Lipschitz continuity of Id +∆tjLNµ provides755

(A.2)
∥∥〈Φ, uN (·, tk, µ)−Πµ,tjv(tj)

〉
+ ∆tj

〈
Φ, LNµ (uN (·, tj , µ))− LNµ (Πµ,tjv(tj))

〉∥∥
RN

≤ C‖
〈
Φ, uN (·, tj , µ)−Πµ,tjv(tj)

〉
‖RN .

Substituting the above bound into (A.1) provides756

(A.3)
‖
〈
Φ, uN (·, tj+1, µ)−Πµ,tj+1v(tj+1)

〉
‖RN≤C‖

〈
Φ, uN (·, tj , µ)−Πµ,tjv(tj)

〉
‖RN

+ ‖Res(Πµ,tj+1v(tj+1),Πµ,tjv(tj))‖RN

The result follows by applying recursion to the above bound.757
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