MODEL REDUCTION OF TIME-DEPENDENT HYPERBOLIC EQUATIONS USING
COLLOCATED RESIDUAL MINIMISATION AND SHIFTED SNAPSHOTS

NEERAJ SARNA * AND SARA GRUNDEL

Abstract. We develop a non-linear approximation for solution manifolds of parametrised time-dependent hyperbolic
PDEs. Our non-linear approximation space is a span of snapshots evaluated on a transformed spatial domain. We compute
a solution in the non-linear approximation space using residual minimisation. We reduce the cost of residual minimisation
by minimising and evaluating the residual on a set of collocation points. We decompose the collocation points computation
into an offline and an online phase. The offline phase computes the collocation points for a set of training parameters by
minimising a bound on the L2-error of the reduced-order model. Moreover, the online phase transports the collocation
points computed offline. Our hyper-reduction is general in the sense that it does not assume a specific form of the spatial
transform. As a particular instance of the non-linear approximation space, we consider a span of shifted snapshots. We
consider shifts that are local in the time-parameter domain and propose an efficient algorithm to compute the same. Our
shift computation is data-driven in the sense that it only requires the snapshots and not the underlying characteristic
speeds of the hyperbolic equation. Several benchmark examples involving single and multi-mode transport demonstrate the
effectiveness and the limitations of our method.

1. Introduction

We consider the evolution equation
(1.1)
yu(x,t, p) = L(u(z,t, ), ) for (z,t, 1) € @ x [0, T] x P, u(x,0, 1) = uo(x, p) for (v, n) € Q x P,
Glu(z,t,pu), n) =0 for (x,t,u) € 00 x [0,T] x P,

where P C R is a bounded parameter domain, 7 is the final time, u (-, ) is the initial data, and Q C R? is
a bounded and open spatial domain. Moreover, the operator G(-, i) prescribes some boundary conditions.
We denote the spatial regularity by u(-, ¢, u) € X, and we consider scalar equations i.e., u(z,t,u) € R.
For hyperbolic problems, the evolution operator L(-, 1) : R — R is of the form

(1'2) L('vu) = —V-f(-,,u),

where f(-, 1) : R — R? is the flux function and V represents a spatial gradient. To discretize the evolution
equation we consider discrete time steps 0 = t; < to < --- < tx = T where at each time instance, we
approximate u(-, g, u) by u™ (-, g, u) € XN. Here, XN C X is N-dimensional and is (usually) of the
finite-element or finite-volume type. For any k € {1,..., K}, we refer to u™ (-, ts, ) as the full-order
model (FOM).

The space XV is high-dimensional resulting in an expensive computation for applications where the
evolution equation must be solved for different parameter instances. This motivates one to look for a
reduced-order model (ROM) where one approximates the FOM by u™(-, ¢, p) € X™ with dim(&X™) =
n < N. The low-dimensionality of X" allows for a possibility of fast computations. We emphasize that
the availability of a low-dimensional approximation space is not sufficient to ensure the computational
efficiency of a ROM. Further reduction might be needed to make the ROM efficient [2, 5, 6, 9]. Indeed,
this will also be the case for the approximation space we propose.

In most ROMs, the solution manifold (i.e. the set {u(-, ¢, ) : (t,u) € [0,T] x P}) of the evolution
equation (1.1) is approximated in a linear space X™. See, for example, [3, 14, 24, 26]. The approximability
of a solution manifold in a linear space is quantified by its Kolmogorov n-width. The faster the decay in the
Kolmogorov width with n, better is the approximability of a solution manifold in a n-dimensional linear
space. For parameterised elliptic and parabolic problems, the Kolmogorov width decays exponentially,
allowing for (acceptably) low-dimensional and accurate linear approximations [7]. However, for hyperbolic
equations, the Kolmogorov n-width decay slowly. One example is the 1D wave equation where the
Kolmogorov width is bounded from below by O(1/y/n); see [12] for a proof. A slow Kolmogorov width
decay makes a linear approximation unappealing because it forces one to choose a large value of n for
acceptable accuracy.

Poor accuracy of a linear approximation motivates the search for a non-linear approximation. To
construct a non-linear approximation space, one can introduce (u,t)-locality in the linear space X™.
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We denote such a space by X,. Such locality can allow one to capture the characteristic wave speeds
of a hyperbolic equation that are local in the (u,t)-domain. The use of a non-linear approximation
space (for hyperbolic problems) first appeared in [25] where authors considered a shifted KL-expansion
with the shift accounting for the transport in the solution. Similar idea was explored in [19] where
authors consider the decomposition X, = {g(,t) - v(p,t)}, with g(u, -) being an element of a Lie-group
and v(u,-) being a template function. Replacing g(u,t) - v(p,t) into the evolution equation (1.1), the
resulting equations for g(u, -) and v(y, -) are closed with phase conditions and then reduced using empirical
operator interpolation. Authors in [4] consider a different approach and construct X, by (i) reducing the
Kolmogorov width with a (u,t)-dependent spatial transform; (ii) performing POD on the transformed
spatial domain; (iii) transforming the POD modes back to the original spatial domain; and (iv) performing
residual minimisation with the transformed POD modes. Similarly in [18], for steady-state problems, X}
is the span of snapshots evaluated on a transformed spatial domain with the transformation being a
polynomial in g and a Fourier series expansion in x. Some works develop the approximation space
online (thus skipping the offline phase altogether) and this, by construction, can lead to a non-linear
approximation [11, 20]. Works in [22, 30] consider a non-linear interpolation for solutions to hyperbolic
problems where the snapshots computed offline are non-linearly interpolated (with Lagrange polynomials
for example) online. This results in the evolution equation being used only in the offline phase, which
leads to computational efficiency.

Following the work in [18, 25, 30], we consider a AX}}, that is a span of snapshots evaluated on a
transformed spatial domain. We find a solution in &), using residual minimisation [1, 2, 5, 18]. The
residual computation loops over all the mesh elements (or all the degrees of freedom of V), which
increases the online computation cost of a ROM. To reduce this cost, we evaluate and minimise the
residual on a subset of mesh points, or the so-called collocation points. We develop an L?-error bound for
our ROM and, offline, we use it to compute the collocation points for a set of training parameters. We
then transport these collocation points during the online phase. Our algorithm for the computation of
the collocation points does not assume a specific form of the spatial transform and thus, can be applied
to various other spatial transforms developed in [18, 22, 30].

As a particular instance of the non-linear space X}},, we consider the span of shifted snapshots. With
the shifts in the snapshots, we capture the dominant ”transport” mode in the solution, and with a linear
combination of the shifted snapshots, we capture the "shape” change in the solution. We consider spatial
shifts that are local in the (u,t)-domain. We compute the shifts using residual minimisation, where, we
minimise the residual over shifts that align shocks and local minima/maxima in the snapshots. While
doing so, we do not use the characteristic speeds of the hyperbolic equation (1.1). This results in a
data-driven algorithm that computes the shifts using solely the solution snapshots. Such an algorithm is
desirable for problems with a spatial dimension greater than one where using the characteristic speeds
are difficult to compute [30].

The article is structured as follows. The second and the third section present the FOM and the ROM,
respectively. The fourth section presents our algorithm for hyper-reduction. The fifth section discusses
the computation of the spatial transform. The sixth section discusses the relation to the relevant previous
works, and the seventh section presents our numerical results.

2. Full-Order Model (FOM)

For simplicity of exposition, in the following sections, we assume a one-dimensional domain i.e., d =1
n (1.1). The coming discussion clarifies that an extension to multi-dimensions is straightforward. Later,
we also consider numerical example involving a multi-dimensional spatial domain. Let Q = [Zmin, Tmax]-
Let {Z7}i=1,... n, be a discretization of Q with Z7 = [Zmin + (¢ — 1) Az, Tin + 7 X Az] and n,Az =
Zmax — Tmin. For the spatial and the temporal discretization of the evolution equation (1.1), we consider
a cell-centred finite-volume (FV) scheme and an explicit-Euler scheme, respectively. For a FV scheme,
XN is a span of scaled characteristic functions of the set Z¥, and reads

(2.1) L) D &Y =span{¢; : ¢; = lzs, ie{l,...,N}}.

1
vV Az
Above, 14 represents a characteristic function of the set A C R, and N = n,. Note that ¢;’s are L?(Q)
orthogonal. For convenience, we collect all these basis functions in a vector ®(x) € RY such that

(2.2) (®(2)), = pi(x), ie{l,...,N}L
2
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Using X'V, we express the evolution equation for the FOM as
(2.3) (@, 0N (- togr, ) = (D, ulN (i, ) + AL x (D, LN (uN (g, ), ), V€ {1,..., K — 1},

where LY : XY — XV is a finite-volume discretization of the operator L, and the initial condition is
given as (®,u” (-,t1 = 0, 1)) = (®,uo(-, ). Moreover, for any w € L*(2), we interpret (®,w) as
(o1, w)Lz(Q) ey <¢N,w>L2(Q))T. We include a discretization of the boundary operator G in LY. For
simplicity, we consider a constant p-independent time-step of At > 0. Between the discrete time-steps
{tk}h=1.. 1, we extend u¥ (-, u) by a constant i.e., uN (-, ¢, u) = ul¥ (-, ty, ) for all t € [ty tpy1).

The operator LY relies on a numerical flux, which we consider to be a local Lax-Friedrich (LLF) flux.
An explicit form of the flux is not of importance here but can be found in [15]. With the LLF flux, and
for a sufficiently regular initial and boundary data, the L?(Q)/L(2)-stability of the discretization (2.3)
is ensured by choosing (see [10, 27])

(2.4) At < Ax

iy / N t )
(mwggmwng(%,MMﬂ

where f'(u™(x,t, 1), ;) represents the derivative of f(-, ) evaluated at u™(z,t, ). During numerical
experiments (in section 7), we consider a one-dimensional parameter domain where |f (u¥ (x,t, u), )| is
monotonic in g. This ensures the above bound for p equals the maximum or the minimum parameter
value.

3. Reduced-Order Model (ROM)

In the following discussion, we develop a reduced approximation for the FOM where the approxima-

tion space is different for each p and tx, and is denoted by X7, .

3.1 Approximation Space for the ROM Consider a 1D parameter domain. An exten-
sion to multi-dimensions is possible using tensor products discussed in [29]. We partition the parameter
domain as

ny

(3.1) P = UL- where Z; = [, ptiv1]-
i=1
We will refer to Z; as the parameter elements. For every parameter y € P, there exists am € {1,...,n,}
such that p € Z,,,. For convenience, we define
(32) m = ().

We do not have a restriction on the value of n, or the size of Z;. In the numerical experiments, we choose
some value for n, and consider parameter elements of the same size. Such a choice can also be made
with a greedy-algorithm, which requires an a-posteriori error bounds. We postpone the development of
such an a-posteriori error bound to our future works.

We motivate our approximation space with the help of an example, similar examples can be found
in [4, 22, 30]. Consider the manifold M := {f(-,u) : p € P} C L*(R), where f(-, ) is a step function
that scales and shifts to the right, and is given as

L+p, z<p

, e P:=10,1].
0, ropu M [0, 1]

f(xhu) = {

Let {f(, fti) }i=1,... n, where fi; € P, represent a set of n snapshots taken from M; some of these snapshots
are shown in Fig la. With a reduced-basis type approach, we can approximate f(-,u) (where pu &
{fti}i=1.....n) in the span of these snapshots. Such a span is linear and with M having a slow decaying
Kolmogrov n-width (see [20]), we require a large value of n for acceptable accuracy. Now instead of the
manifold M, consider the following manifold M, that consists of all the step functions shifted such that
their discontinuities are aligned with the discontinuity in f(-, u)

MM ::{f(‘p('vﬂvﬂ)vﬂ) : 90('7“7/1) =T - (/i - ﬂ)? ﬂ € P}v
:{O‘f('vﬂ) Pace [172]}
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The snapshots taken from the manifold M, are shown in Fig 1b. From the above definition of M, we
conclude that f(-,p) is well-approximated in the span of a single snapshot (different from f(-, u)) taken
from M,,." In the terminology of [4], the spatial transform (-, sz, i) calibrates the manifold M such that
the snapshots from the resulting manifold M, better approximate f(-, u).

snapshots from M snapshots from M,
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Figure 1: Snapshots taken from (a) M and (b) M,,.

From previous numerical experiments and theoretical results (for e.g. see [18, 20, 30]) we know
that u® (-, 1, ) is poorly approximated in the span of snapshots taken from the manifold M;, :=
{uN (-, tx, i) : f € P}. However, similar to [4, 30], we assume that there exists a spatial transform
o5 i, i tg) = Q — € that calibrates M,, such that u” (-, ¢, u) is better approximated in the span of
snapshots collected from

(33) Mﬂqtk = {UN(QO(',,U,,[AL, tk)atkaﬂ) D pe P}
To ensure that u™ (-, tg, 1) € M,, 4, , We require
(34) L,O(',,U/,/J/,tk) = Ida

where Id is an identity operator. We will compute ©(-, p, fi, t) such that the above property is satisfied.
Note that compared to our example, the additional time-dependency in the spatial transform accounts
for the time-dependency in the solution.

To collect snapshots from the manifold M, ;,, we use the observation made in [1, 2, 18] as per
which snapshots corresponding to the parameters that are in the neighbourhood of p are sufficient to
approximate u” (-, tx, ). Therefore, we take snapshots at M > 2 different parameters in Z,u) given as
Py < 1 < fiz < -+ < fing < fiy(u)41, Where 7 is defined in (3.2). Approximating ulN (-, tg, 1) in the
span of these snapshots provides

ot

’U’N(vtk;,u’) ~ un(ﬂtka/u) S
where X7, =span{y), . ¥, = u (M (- p fi5 tk) e 1), G E L. M1}

(3.5)

Above, oM (-, 1, f1j,t) is an approximation to (-, i, fi;, 1), and is given as follows. For some fi; €
{ft;}i=1,... ., consider the function p — ¢(x, i, fi5,t). Assume that we can compute this function for all
w € {fi}i=1,.. m then we can approximate it using Lagrange interpolation as [30]

M
(36) @(xvﬂaﬂjatk) = @M(xaﬂvﬂjvtk) = Zliq(ﬂ)@(%ﬂmﬂjatk)-
i=1

!Indeed, the best L2-approximation of f(-,u) in the span of a single snapshot (# f(-, 1)) from M, is f(-, u).

4



3.2 Residual Minimisation

Above, [; is an i-th order Lagrange polynomial. We will refer to the different o(z, fi;, fij,tx) as the
snapshots of the spatial transform. Later (in section 5) we assume a specific form for (-, fi;, fi;,tx) and
discuss its computation.

In our numerical experiments, we consider parameters {f;};=1,... a that are uniformly placed inside
T, (- With an a-posteriori error indicator, one can also choose the set {fi;}i=1,....» using the different
techniques outlined in [8, 9, 16, 28]. The performance of each of these techniques changes with the test-
case and the approximation space. Although an interesting question in its own right, we do not study
the influence of these techniques upon the approximation quality of X', .
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160 REMARK 1. In (3.6), we approzimate @(x,-, fij,tg) in the linear space span{l;}i—o,... (v—1), which
161 s in contrast to our non-linear approvimation for u (-, ty,u). Current literature and this article of-
162 fers no solution to problems (if they exist) where the spatial transform could also require a non-linear
163 approximation.

164 REMARK 2. One can consider a different polynomial degree than M to approximate the spatial trans-
165 form in (3.6). For simplicity, we consider this polynomial degree to be M.

166 3.2 Residual Minimisation We compute a solution in X", using residual-minimisation.

otk
167 Writing the finite-volume scheme (2.3) as a residual minimisation problem provides
(3.7) u™ (-, tpy1, p) = argmin||Resy, (w, u (-, tg, 1)) ||gv, Vk€{0,...,K —1},
wexXN

168 where X' is the high-dimensional finite volume space given in (2.1). The residual Res;, : XV x AN — RN
169 follows from (2.3) and is given as

(®,w) — (D, v) — At x (®, LN (v,p)), ke{l,....K—1},

(38) Resy, (w,v) = {<q>,w> —(®,u0( 1)), =0

170 All the other quantities are as given in (2.3). For simplicity of notation, in the following discussion we
171 suppress the time dependency of Resy, .

172 Motivated from the residual formulation (3.7) of the FV scheme (2.3), we approximate u® (

Yy tk+17 /1/)

173 i X7, by minimising the RY-norm of the residual. Similar to the formulations in [1, 2], this provides
(3.9) uM (tern, ) 2 U (b, p) = argmin [[Res(Iy,p,w, T, w” (- e )|,
weX:ythrl
174 where I, 4, « X7, — XN is a projection operator defined later, and k € {0,..., K —1}. For convenience,
175 we express the minimisation problem (3.9) in a matrix-vector product form. Every w € &}, has the
176 form w(z) = (o, ¥y 1, (z)) g » where a € RM contains the expansion coefficients, and ¥, 4, (z) € RM is

177 a vector containing all the basis functions given in (3.5). By substituting this expression for w into the
178 minimisation problem (3.9) we find

(3.10) Qi = argnEnHAu,tHla —butllry, VE€{0,...,K —1},
a€cR

179 where o, ,,, € RM and is such that u"(z,tp41, 1) = Qs Yputeys (@) The matrix A €

180 RM*M and the vector by, ;, € RV are defined as

w0t (o)
bu,,tk = <(I); Hu,tkun('7tk7/1')> + At X <¢7 LN(Hu,tkun('atk7,u)7M)> )

RM* Hyli41

181 with wi,tkﬂ as given in (3.5). Note that the definition of Res given in (3.8) implies by, 1, = (@, uo(-, 1t)).
182 Our later definition of II,;, ., (given in subsection 5.3) will clarify that it is cheap to compute the
183 inner-products appearing in the definition of A, , and b, 4, .

184 The dimension of the approximation space X, is M, where we expect M < N = dim(X M.
185 Despite of this, in terms of the computational efficiency, we do not gain much by computing a ROM
186 using residual minimisation (3.10). Indeed, currently, our ROM is more expensive than the FOM. This
187 is mainly because for the ROM, we require an online computation of A, ., and b, , both of which
188 require a loop over all the basis functions in ®. In addition, one needs to solve the least-squares problem
189 in (3.10). In comparison, the FOM only requires a computation of b, ;. Later in section 4, we reduce

190 the computational cost of the minimisation problem using hyper-reduction.
5
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REMARK 3. Although some authors consider residual minimisation in the L*-norm (see [5, 23, 25]),
recent results (see [1, 18]) indicate that using the L'-norm could provide better accuracy. Ease of im-
plementation and computational efficiency motivates our choice of the L?-norm. Numerical results we
present later might improve by using the L'-norm or some other metric. Comparing the performance of
different norms is not the goal here.

3.3 Summary of the algorithm: Algorithm 3.1 presents the offline phase of the algorithm.
Line-1 is self-explanatory. Line-2 provides all the spatial transforms required to construct the Lagrange
interpolation given in (3.6). Line-3 computes the offline phase of hyper-reduction and will be clearer
later. Algorithm 3.2 presents the online phase of the algorithm. Line-1/3 are self-explanatory. Line-2
performs the online phase of hyper-reduction and will be clearer later.

Algorithm 3.1 Offline Phase: Algorithm for model reduction

1: For each Z; given in (3.1), compute the FOM for all p € {fi,},=1,... m using the time-evolution scheme
given above in section 2.

2: For each Z;, compute all the snapshots of the spatial transforms {¢(z, {i;, fir, tx)}j1=1,....a for all
k e {1,...,K}. Details are discussed below in section 5.

3: Perform the offline phase of hyper-reduction. Details are discussed below in section 4.

Algorithm 3.2 Online Phase: Algorithm for model reduction

1: For a given p, approximate {¢(z, u, fi;,tx)}j=1,.. m using polynomial interpolation (3.6).

2: Perform the online phase of hyper-reduction. Details are discussed below in section 4.

3: Compute u" (-, tx,p) for all k € {1,..., K} using residual-minimisation and hyper-reduction. Details
are discussed in subsection 3.2 and in section 4.

REMARK 4. One can treat the time variable the same as a parameter, and compute the spatial trans-
form for a few time instances while performing a polynomial approximation (same as (3.6)) for others.
This reduces the offline computation cost at the expense of some accuracy. For the simplicity of exposition,
with an additional offline cost, we compute the spatial transform for all time instances.

4. Hyper-reduction

Let P,4,.,, : RY — RY represent a (u,tx11)-dependent operator which is such that solving the
following minimisation problem is (much) cheaper than solving the one given in (3.9)

(4-1) un’hyp("tk-i-l’u) = arginin ”Pmtkﬂ ReS(HHﬂfkﬂw’Hu,tkumhyp('vtkaﬂ))||RN'

w
€ Mot

Above, Res is given in (3.8), and u™"P(- t;,1, 1) is an approximation to u"(-,ty41,4). Following a
collocation based approach, we consider

(4.2) Pu,tk+1 = Pu,tk-+17
where
1, €€ j=1
NxN N otk g1 )
(4.3) Putsy € RTT, (Pﬂvtkﬂ)ij o {0, else - '
Thus, P, 4, ., is a collocation matrix for the set £, ,., € {1,..., N} and has zero columns for the indices

in (5u,tk Jrl)c7 where ()¢ represents the complement of a set. For simplicity, whenever it is clear from the

context, we will remove the zero columns from P, ;, . Let
h
(4.4) N =t

where #(-) represents the number of elements in a set. For N7 < N, with the above choice of P

Ptk
we compute only the N ;”éi ,, entries in Res. This reduces both, the cost of evaluating the residual and
the cost of solving the least-squares problem (3.10). We refer to £, ,, as a set of collocation points and
compute it as follows. We emphasis that our computation of £, does not assume the specific form of

the spatial transform considered later in (5.1).
6
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4.1 Computation of the collocation points:

219 4.1 Computation of the collocation points: We divide the computation of &4, ,
220 into an offline and an online stage. The offline and the online stage corresponds to line-3 and line-2
221 of Algorithm 3.1 and Algorithm 3.2, respectively, and are outlined as follows.

222 (i) Offline stage: Let {fi;};—1,. amnvr C Iy (see (3.1) for a definition of Z,(,)) be a set of param-
223 eters that does not overlap with the set {fi;}i=1, s given in (3.5). The reason for considering
224 non-overlapping sets is made clear below in remark 5. The value of M"¥? < M is user-defined.
225 Choosing M"™P > M did not provide any additional benefit in our numerical experiments. We
226 compute &£, ¢,,, by minimising a bound on the error
(4.5) By tyen = 10 (ot fia) —w™ P (b, i) | 20

227 (ii) Omline stage: Let p & {fi;};—1,. anwe U {fti}i=1,...,.ps be the parameter of interest. Then, with
228 the spatial transforms o(-, t, fii, tx4+1), we account for transport in {&z, ¢, }iz1, . anwe. This
229 finally provides us with &4, ,.

230 Offline stage: A bound for Ej, 4, , follows from the result given below; similar result can be found

231 in [9]. The result uses recursion and assumes the Lipschitz continuity of the operator Id +At x LN (-, u),
232 where LV (-, 1) is as given in (2.3). For the time-step restriction given in (2.4), the assumption of Lipschitz
233 continuity is satisfied; see [10, 13] for further details. Note that the result holds independent of the choice
234 of Ppgyy,-

235 LEMMA 4.1. Let Id : XN — XN be the identity operator, and let L™ (-, 1) be as given in (2.3).
236 Assume that the operator Id +At x LN (-, ) is Lipschitz continuous on X with a Lipschitz constant
237 C >0 i.e, for all u,v € XN it holds

(w4 At x LN (u, 1)) — (v + At x LN (v, 1)) |2y < Cllu — v]| p2(q)-

238 Let {v(t;)}j=1,...k be a sequence in X", then it holds

k
239 (4.6) [u® (st 1) = v(trs) 2@ < Y CF (ej +d;)
j=0

241 where k € {0,..., K — 1}, and

¢j 1= [Ppt; iy Res (e, v(ts), M, v(t5)) v,
dj = || (Id _]P);Uf:thrl) Res (H;L,tj+1v(tj+1)7 HH t; U( )) ||]RN

242 Proof. See Appendix A. 0

243 Choosing v(tg41) = u™MP (-, ty41, fis) in (4.6), provides a bound for the error Ej, ¢, ., given in (4.5). It is
2144 preferable to make this bound as small as possible. The definition of u™"YP(- t;41, ), for a given P
245 minimises the ¢;’s appearing in (4.6). We choose the set &,
246 on dy.

247 To have an upper bound on di, we make the following assumption. We assume that if the total
248 number of collocation points is larger than M then irrespective of the choice of the collocation points,
249 there exists a time-step size smaller than or equal to the bound given in (2.4) such that the solution
250 uMYP( g, 1) is L2-stable. Equivalently, for a given grid size Az > 0, we assume that

(4.7)

Hott1o

+,te+1 Such that we minimise an upper bound

(4.8) 30 < At < AP [P () || )< Cy Yt 1) € [0,T] X P, Euy € €,
251  where & is a collection of all possible collocation points with size larger than M, and At°P? is the upper-
252 bound given in (2.4). remark 6 below further elaborates on the above assumption. Note that under the
253 time-step restriction given in (2.4), the FOM also satisfies an estimate similar to the above [27].
254 Using the above assumption, the upper bound on dj, follows from the definition of Res given in (3.8),
255 our choice of v(t;) and triangle’s inequality

(4'9) d% <C ”(Id 7Pﬁ7:,tk+1 )Aﬂi7tk+1 H%Jr” (Id 7]P)ﬂivtk+1)bﬁi7tk ”]%RN

=:E
7




4 HYPER-REDUCTION
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Above, Aj, 1., and by

— AT
Let (a1,...,any) = Aﬂiatkﬁ—l.
when we define &,

are as defined in (3.11), and ||-||p represents the Frobenius norm of a matrix.
We conclude that for the choice of Py, ¢, ., given in (4.2), £y is minimum

itk

tepr A8

2
(4.10) G = agmax > (llaplRat (baon)?) -
wC{L. . N} #w=N"0 | pew

REMARK 5. One can check that for p € {fii}i—1 . prrve O {fli}ti=1,... .01, we have
Res (H

mthrlun,hyp(.’ tk+17 ,U’)a Hu,tkun’hyp('a tkv N)) = 07

where k € {0,..., K —1}. The above relation makes the bound on E,,
{ti}iz1,... mmve such that it does not overlap with {fi;}i=1,.. -

tes1 trivial therefore, we choose

REMARK 6. Presently, there lacks a theoretical justification for the assumption in (4.8). However,
choosing &g, 1., randomly, ensuring #&x, +,., > M and performing multiple runs of the ROM results
in a solution that is bounded in L*(Y). This indicates that a proof of (4.8) could be possible. For
#Ei tnpr < M we have an under-determined least-squares problem (4.1), which, at least for our test

cases, results in instability.

Online stage: We compute £,;, , in the online phase as follows. As p deviates from ji;, the
snapshot u™ (-, ty41, fi;) is transported along the spatial domain and we transport the entries in Eii tiin
along with it. Since the spatial transform (-, fi;, u,tr+1) captures the transport of u¥(-,t51,p) to
uN (-, try1, fii), we approximate Eutrpy Dy transforming every entry in £, 4, ., With ©(-, fis, g, try1). We
do so as follows. Let y, denote the centroid of the mesh element Z7. Every p € &, 1,,, corresponds to
a unique y,. Then, ©(yp, fii, 11, tx+1) denotes the spatial location of a collocation point in &, ,. To get
the collocation point corresponding to ¢ (yp, fti, i, tk+1), we define T : @ — N such that z € Z¥ (), where

I¥ () is the T(x)-th spatial element. Then, &, 4, ., is given as
Mhyp

(411) gu,tk+1 ~ U {T(%’(yp’ﬁi,#atk-i—l)) 1 pE Sﬂ{,,tqul}'
i=1

There are two ways to compute (-, fi;, i, tr41): (i) compute the snapshots {¢(, fij, fii, ths1)}j=1,... pmrve
offline and approximate (-, fi;, i1, tx+1) using the Lagrange interpolation (3.6); and (ii) use ¢(+, fi;, ft, tg+1)
(which we anyhow compute) to approximate (-, fi;, 4, tx+1). We use the second option because it is
cheaper. To approximate ¢(-, fi;, i, tx+1), we assume that a spatial transform follows the following chain
relation [30]

(412) @('7/’11'5 :u’7tk+1) ~ 90('7/’11'5 ﬂi)tk-‘rl) © <p(.7ﬂi7u7tk+1)'

Both (-, fii, fii, tk+1) and @(-, fi;, 4, tg+1) then follow from the Lagrange interpolation in (3.6).

REMARK 7. From (4.11) we find that the size of E,y,., is M"P x NZZ%ZH. However, in all our
numerical experiments #E,, 1, ,, ~ N[Z’ytfﬂ, which implies a large overlap in the underlined sets shown in

(4.11). This is expected when the spatial transform accurately approximates the transport in the snapshots.

REMARK 8. The above definition of E, 4, given in (4.10) requires both Ag, .., and by, ¢, . To
compute by, 1, , one needs to solve the expensive least-square problem (3.10) for all p € {fii};=1, . ahve-
However, this computation is offline and is done only for a finite number of p-values. This is (much)
cheaper than solving the expensive least-squares problem (3.10) for every query parameter.

4.2 Discussion: In [18] authors choose &, 1, 41 as the discrete empirical interpolation colloca-
tion points of the residual. This approach has a few shortcomings. Firstly, it does not need to minimise

the error bound in (4.9). Secondly, to choose N Lﬁfﬂ number of collocation points, one requires at least

MMwr = N L“{f; T number of snapshots of the residual and a singular-value-decomposition of the resulting
snapshot matrix. This results in an expensive offline computation if the singular values decay slowly,

which results in N7 being large. In our method, the error bound in (4.9) is minimum by construc-

Ptk
tion. Moreover, the value of M"P and N ,il,yti , can be chosen independently. Even with M hyp = 1, one
hyp .
can have a N#7tk+1 as large as possible.
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Apart from the error E, ;, ., defined in (4.5), we can define the following error that quantifies the
accuracy lost by solving the hyper-reduced minimisation problem in (4.1) over the original one in (3.9)

A

(4.13) Bty = 10" (o tigr, i) — ™" (g, 1) || 20 -
Let Nyto,, =N — NP As N,

ability of a bound on E,h

— 0, we expect E — 0. Unfortunately, there is an unavail-

th+1 Motk

tvs1- We leave the development of

twy, that could prove its convergence with N,

such a bound for future works, and later study the convergence of £
We speculate that it should be possible to bound Eu,tk i

E converges slowly then to achieve an acceptable accuracy, one would require a large value of N LL’?#:H.
This would reduce the efficiency of our hyper-reduction. However, at least for linear problems, ensuring
a decay in F; is simple. Consider, for example, the linear advection equation O;u + d,u = 0. Since
u(x,t) = ug(z — t), an appropriate choice of initial conditions ensures a decay in Fj.

One can choose Py, ., with the gappy-POD (or the DEIM [6]) approach by projecting the residual
onto its POD-basis [2, 5]. This provides
(414) Ptk_H = Utk+1 (PT

tht1

\u,tesr USing numerical experiments.

in terms of E; given in (4.9). In that case if

Utk+1)TPT

th+1?

where Py, ,, is the collocation matrix, () denotes the Moore-Penrose inverse of a matrix, and Uy, o €

hyp
RV Mk is a set of POD-modes for the snapshot matrix of residuals. Note that the collocation matrix

Py, ., is not necessarily the same as that resulting from (4.11). The DEIM approach differs from ours in
the following sense. Firstly, it assumes that the residual is well-approximated in a linear finite-dimensional
space, which is the span of the POD basis. Secondly, the collocation matrix is computed offline with a
greedy-iteration and is p-independent. Note that for a non-linear approximation of the form (3.5), similar
to the solution, the residual can also show a moving wave-type behaviour along the p-space. This can
result in (i) poor approximability of the residual in a linear space, and (ii) an ill-suited p-independent
collocation matrix P, ,. Later, through numerical examples we demonstrate the moving wave-type
behaviour of the residual and the problems that arise from it. Note that also the DEIM approach does

not provide a bound for the error Eu,tk+1 given above in (4.13).

5. Computation of the spatial transforms

We discuss the computation of ¢(z, fi;, f1j,tx) appearing in (3.6). An algorithm to compute the
spatial transform should provide

(i) a (-, fu, fij,tx) for an arbitrarily large |f; — fi;];

(ii) an invertible ¢(-, fii, i1, tk)-
Choosing the parameter samples {fi;};=1,.. a with a greedy-algorithm that has an arbitrary error toler-
ance could result in an arbitrarily large |f; — fi;]. Similar observation holds for other methods used to
sample {fi;};=1,. . a. That is why we need the first requirement. The second requirement is motivated
by intuition. To elaborate, let u™ (-, #, ii;) represent the density of some fluid. Let ¢(x, ii;, fi;, tx) be non-
invertible, which implies the existence of a xg and a z; such that y = ¢(xo, fis, {1, tk) = ©(@1, fli, fij, Lr)-
Then, composing u™¥ (-, ¢y, f1;) with (-, fi;, fi;, tx) results in the density at y being transported to two
different locations xy and x7, which is physically unacceptable.

We satisfy the second requirement of the above two by choosing ¢(x, fi;, {15, t%) to be a shift in space
ie.,

(51) (p($7ﬂiv,&j7t1€) = @(z’c(ﬂi7ﬂj7tk)) where @(IIJ,C) =T —C

Above, we still need to compute the shifts c(fi;, iij,tx) € R%. Note that u™ (O(z,c),t, 1) requires values
from outside of €2, which we prescribe as follows. We assume that there exists an ¢ > Ax such that the
solution, for all time and parameter instances, stays constant inside [Zmin, Zmin + €] and [Zmax — €, Tmax]-
Equivalently,

U()(,M), V(%tﬂ) € [xminvxmin + 6] X [O,T] X 73,

(5'2) u(m,t,u) - {Ul(ﬂ)7 V(x,t,u) € [Zmax - 675Emax} X [OvT] x P,

where Up(11), U1 (1) € R. With the above assumption, if z — ¢ < Zmin, we set u™ (x — ¢, t, u) = Up(p1), and
if 2 — ¢ > Timax, we set u (z — ¢, t, 1) = Uy (p). Note that the assumption is true for Riemann problems,
and Cauchy problems with compactly supported initial data.

9



5 COMPUTATION OF THE SPATIAL TRANSFORMS
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The above mentioned first requirement is ensured by computing a shift c(f;, fi;,t5) for any given
parameter difference |{i; — fi;|. When ¢ = j, we choose ¢(fi;, f1j,tx) = 0. This ensures (3.4). For i # j, we
compute ¢(fi;, fi;,tr) as follows. One way is to use the following minimisation problem that minimises
the L?(Q) error

C(ﬂiaﬂj’tk) = arg min HuN(@(~,c),tk,/lj)—uN(~,tk,ﬂi)||L2(Q).
(53) c€[—nzAz,nyAx]

=:R(c)

One can solve the above problem using a fixed-point iteration [18, 30]. However, the following problems
arise. Firstly, the function R does not need to be convex, which could result in a fixed-point iteration
providing a sub-optimal local minima. Secondly, because R can have flat regions, a fixed-point iteration is
(very) sensitive to its initial guess and the step-size. For example, consider the following two characteristic
functions

(54) uN("tkaﬂj) = ]]-[O,I]a uN('7tka,[Li) = ]]-[2,3]'

The two functions are L2-orthogonal for ¢ € [0,1], which results in R([0,1]) = v/2. Therefore, with an
initial guess of ¢ = 0 (without any additional regularisation) one will never move past the initial guess.
Choosing |fi; — fi;| small enough ensures the strict convexity of the minimisation problem (5.3), but it is
unclear how small should |fi; — fi;| be [30]. Moreover, at least for the above example, a shifted u¥ (-, ty, /1)
accurately approximates u® (-, tx, fi;) and therefore, decreasing |fi; — fi;| further is unnecessary. Indeed,
ulN (z —2,ty, ;) = uN (2, g, f1;). Note that even if we can compute a unique shift using (5.3), it does not
ensure that the discontinuities in u™ (-, ¢y, i;) and u (-, ¢, fi;) are aligned. Such an alignment is needed
to accurately capture the shock speeds and locations.

REMARK 9. With our choice of the spatial transform (3.6), one can check that the chain relation in
(4.12) simplifies to c(fiz, po, th1) = c(fbi, flis 1) — C(fhis fy trgr)-

5.1 Computing spatial transforms using feature matching: For the above rea-
sons, we do not use a fixed-point iteration to find the shift values. Rather, we find a shift such that it
aligns a dominant feature between the two snapshots. We elaborate on what we mean by a dominant
feature. A feature is user-defined and refers to a local structure in the solution that one wishes to capture.
For example, in fluid flow applications, a feature could mean a shock, a rarefaction fan, a vortex etc. Out
of all the features, the dominant feature is the one, aligning which, results in the minimum L2-distance
between the snapshots. Note that although the definition of feature(s) is flexible, it should be such that
for all (u,t) € P x [0,T] the FOM contains at least one feature. Else, one ends up with no features to
align, which results in no shift values.

We counsider a shock and a (strict) local minima/maxima in the solution as a feature. After some finite
time (usually) solutions to non-linear hyperbolic problems develop shocks and it is desirable to capture
these shocks accurately. For that reason we consider them as a feature. For a continuous initial data, it is
possible that the solution does not contain a shock. This motivates us to consider a local minima/maxima
in the solution as a feature. Moreover, since the absolute value of a solution is locally maximum near a
local minima/maxima, we expect that aligning these local minima/maxima will significantly reduce the
L2-distance between the two snapshots. With an appropriate choice of the initial data (or the space-time
domain € x [0,7]), we ensure that every snapshot has at least one shock or a local minima/maxima.
Later, we present examples of such a situation.

We cast the computation of a shift using feature matching as a minimisation problem. Let
B(fii, ftj,tr), which is a subset of [—n,Ax, ngAx], represent a finite ({;, fi;, t)-dependent set that contains
shifts that align all possible features between the snapshots u® (-, 4, fi;) and uN (-, tx, f1;). Then, following
the above discussion, finding a shift through feature matching is equivalent to solving the following
problem

(55) (s i) = argmin (o),
c€B(fui,fug,tx)
where R(c) is as defined above in (5.3). We assume that the size of B(f, fi;,tx), which we denote by
#B(fi;, f1j,t), is small enough. Then, we can cheaply solve the above problem using enumeration i.e.,
we compute R(c) for all ¢ € B(fi;, fi;,tx) and pick the shift corresponding to the minimum value of R(c).
We later elaborate on our assumption of #B(fi;, fij,t;) being small. Below, we discuss how to compute
B(ﬂla ﬂja tk)'
10



5.2 Discussion:

387 Identification of features: Let y; denote the centroid of the mesh element Z7. Let du? (ty, fi;)
388 represent an approximation to the first-order space derivative in the j-th mesh element. We can compute
380 such a derivative with (for example) central differences applied to cell-averages ulN (yj,tr, p). Define the
390 ratio v (tg, f1;) as

Sgn(du] (tkv ﬂz) — duj_l (tkv ﬂl))
sgu(dul 1 (ty, fi;) — dud (tr, ;)

rj(tka :ﬁ’l) =

391 where sgn(-) represents a sign function. In B(fi;, t;) we collect the locations of the centroids of all those
392 mesh-elements (i.e. Z7) for which 79 (fii, tr) < 0. Doing the same for u™¥ (-, ty, f1;) provides us with the
393 set B(fj,tr). Thus, the sets B(fi;, tx) and B(fi;,tx) contains shock locations and the location of the local
304 minima/maxima occurring in u® (-, tg, fi;) and u® (-, tx, fi;), respectively. Aligning all possible locations
395 in these two sets provides us with (#B(ft, tx) x (#B(f;,tr)) number of shift values that we collect in the
396 set B(fi;, flj,tr). We then remove the repeated shifts occurring in B(fi, fi;, tx), which provides us with
397 the desired set.

398 5.2 Discussion: In (23], B(fi;, fij,t) is a set of shifts that are integer multiples of Az and
300 lie inside [—n,Az,n,Az]. Such a choice results in #B(fi;, fi;, 1)) scaling with n, (or with nd for d-
100 dimensions), which leads to an expensive solution to (5.5). In contrast, for our choice of B(f;, fi;,tx), if
1 the FOM does not oscillate along the entire spatial domain or does not have a large number of shocks
402 then we expect #B(fi, ft;,tr) < ng. This is the case for all our numerical experiments. Moreover, for
3 convergent FOMs, we expect that no new points are added to B(fi;, 1j,tx) beyond a certain n,.

404 The minimisation problem (5.5) does not need to have a unique solution. Consider the two charac-
105 teristic functions u™ (-, ty, fi;) = 170,17 and uN (-, th, fi) = 1j2,4). One can check that B(f, 15, tx) = {2, 3},
106 and that R (B(f, ftj,tk)) = {1,1}. Clearly, R is a constant on B(fi;, fi;,t). If minimising R (i.e. the
107 L2-error) is the sole interest then both the shifts in B(fi;, i, ) are equally acceptable. One can make a
408 distinction between the two shifts by specifying additional quantities of interest. For example, the shifts
409 ¢ = 2 and ¢ = 3 accurately capture the shocks at x = 2 and = = 4, respectively. Therefore, if one is
410 interested in the shock at x = 2 then one must choose ¢ = 2. In all our numerical experiments the
111 solution is such that the minimisation problem (5.5) resulted in a unique solution, and we did not specify
112 any additional quantity of interest.

413 The spatial transform (5.1) has d-degrees of freedom, which are the d-components of the shift
414 ¢fii, fb5,tr). With d-degrees of freedom, in a d-dimensional spatial domain, we accurately capture one
415 dominant feature of the solution. To capture more than one feature, one requires additional degrees of
116 freedom in (-, fi;, fi;, tx), which one can introduce with a higher-order polynomial (or Fourier-series) ex-
117 pansion for (-, fi;, fi;,tx); see [18, 30]. One computes such a spatial transform by minimising a residual
418 (see (5.3) above) with a fixed-point iteration, problems related to which are already discussed above.
419  Moreover, it is unclear how to ensure the invertibility of such a spatial transform, which is undesirable.
420 Another possibility to capture additional features could be to introduce spatial dependence in the shift.
421 Such a shift would move different (spatial) "parts” of the solution differently, allowing one to capture more
122 than one feature. This would be similar to the monotonic rearrangement based interpolation considered
123 in [22]. We hope to consider a spatially dependent shift in our future work.

424 We present examples where the set B(f;, fi;,tx) given in (5.5) is non-empty, or equivalently, scenarios
425 where every snapshot has at least one shock or a local minima/maxima.

426 EXAMPLE 5.1. Consider linear advection Opu(-, -, u) + B(p)0zu(-, -, u) = 0. One can show that

127 u(z,t,pu) = up(x — B(u)t). As a result, if up(-, 1) has a discontinuity then so does u(-,-, ). Moreover,
128 if ug(+, ) has strict local minima/maxima at the points B C R then so does u(-,-,pu) at the points
129 {x+ B(p)t : € B}.

430 EXAMPLE 5.2. Consider the Burger’s equation Oyu(-, -, ) + 30yu(-, -, 11)? = 0. If ug(-, p) is discontin-
431 wous and non-increasing then there exists a finite time before which the solution has a shock. If ug(-, )
132 is smooth then either the solution develops a shock after some time or it remains smooth. Following the
133 reasoning of the previous example, a smooth solution will preserve the strict local minima/mazima in the
134 initial data.

35 5.3 Projection Operator: We define the projection operator Il s, : X}, — X appearing
36 in (3.9). Substituting the expression for the snapshots of spatial transform from (5.1) into the Lagrange
11
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interpolation in (3.6), we find a Lagrange interpolation for the shift values

(5.6) (s g ti) =~ ™ (p, g, t) : le V()™ (i, g te).

Let ul¥ (-, ty, 1) = va 1 Bite, ) di where Bi(tk, ft;) are some expansion coefficients, and ¢; is given in

(2.1). Then, from the definition of 4’ , (given in (3.5), we find

2873

/L try — Zﬂl tkhuj ¢1( ( M(,u‘7ﬂj7tk)))7

=1

where © is as defined in (5.1). Let w = ¢M(u, fij, tx)/Az. Assume that w € Z, and that w > 0. The
construction for w < 0 is similar and is not discussed for brevity. We later discuss the case where w ¢ Z.
One can show that for i € {1,..., N —w}, we have ¢;,(0O(-,wAz)) = ¢;4.. This implies that when w € Z,
we have

(57) ,u,t,c Z 62 tk:a/j/_] ¢z+w + ZUO ,uy \/K

The underlined term of the above two follows from taking values from outside of Q using (5.2). When
w ¢ 7Z, we replace w by |w] in the above expression. Thus, for w > 0, we define II,, ;, as

N—|w]

(5.8) e, 00, = Z Bi(t 1) bt ) +ZU0 1) biV Az

The above definition relies on shifting the indices of the basis functions ¢;, which we expect to be less

expensive than computing L? inner-products in an orthogonal projection from X to X N,
REMARK 10. Let ajT € RY be the j-th column of the matriz Ay, ., given in (3.11). With 11, ,, as

give above, ajT has the following (easy to compute) expression

T

(59) aT: Uo(ﬂ])ma7U0(ﬂj)@aﬂl(tkaﬂ])aaﬂN—\_wJ(tkaﬂj)

J

|w|—times

6. Relation to the Previous Works

With formal arguments we show the similarities and the differences between the present work and
the works related to symmetry reduction [17, 19, 25]. Assume that we can decompose the solution to the
evolution equation (1.1) as

(61) u('7thu) = T(ta u)f(t,u).

Above, T(t,p) : X — X and f(t,u) € X, where X is the solution space to the evolution equation (1.1).
We can interpret f(¢, 1) as being representative of the "shape” of u(-, ¢, 1), and the action of 7 (¢, 1) being
representative of the "transport” in u(-, ¢, ). With the above decomposition, approximating the solution
is equivalent to approximating f(¢,u) and 7 (¢, ). One can assume that f(¢, u) is well-approximated in
a linear space and the action of T (¢, 1) is well-approximated in a non-linear space.

In the present work (and also in [4, 18, 30]), we approximate the action of T (¢, u) by shifting (or trans-
forming) the snapshots along the spatial domain and f(t, u) in the span of the shifted (or transformed)
snapshots. Equivalently, calibrating the manifold M; to M, ; with spatial transforms approximates the
action of T (¢, ), and a linear reduced basis approximation of M,, ; approximates the evolution of f(t, 11).

n [17, 19, 25|, authors approximate the action of T (¢, 1) by the action of a Lie-group and f(¢, u) using
a POD/KL-expansion.

Once we have an approximation space for T (¢, u) and f(¢, 1), we need to compute the two quantities in

their respective approximation spaces. This is where the present work differs from that in [17, 19] where,

12
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before performing any approximation, authors derive a governing equation for f(t, x) by substituting the
above decomposition (6.1) into the evolution equation (1.1) and multiplying by T (¢, ,u)_l. This results
in

Ouf (b, 1) + T(t, )~ 0T (b, ) f(t, 1) + T (b, )" LT (t, 1) f(t, 1), ) = 0.

After substituting the approximation for 7 (¢, 1), which results from the so-called reconstruction equation,
one can reduce the above equation using any linear model order reduction technique. However, for an
efficient ROM, the underlined term needs to be simplified by assuming that L(-, ) is invariant under the
action of T (¢, u). Equivalently,

T(t7H)_lL(T(t7u)f(t’N)7ﬂ) = L(f(tvﬂ)7u)'

In the present work (and in [1, 18]), we do not treat the evolution of T (¢, ) and f(¢, u) separately.
Rather, we substitute our approximation for 7 (¢, ) and f(¢, ) into the discretized evolution equation
(2.3) that results in a residual. Minimisation of the residual provides us with our ROM. We reduce the
computational cost of residual minimisation using hyper-reduction, which does not rely on any invariance
property of the evolution operator.

Evolution operators L(-, i) of practical relevance are (mostly) only invariant under Galilean trans-
formations i.e., under a rotation, a translation, and a uniform motion of space-time. Approximating the
action of T (¢, u) through Galilean transforms of f(t, p1) is accurate for most Cauchy problems but could
be ineffective for boundary value problems. For such problems, one requires an approximation (similar
to [18, 30]) that is different than a Galilean transform, and which is not necessarily invariant with L(-, u).
This makes it crucial to develop ROMs that do not rely on the invariance properties of the evolution
operator.

In [21, 23], for a given u = g, authors consider a snapshot matrix given as

(<(I)7UN('7tlnu0)> PR <(I)7UN('7tk7NJO)>) )

and shift the spatial domain to induce a singular value decay in the snapshot matrix; recall that ®
contains the basis of XV. Although authors ensure a fast singular value decay, they do not vary the
parameter, nor do they propose an algorithm to compute a solution using shifted POD-modes. Both of
these problems are considered here.

In [25], the authors consider a shifted KL-expansion. Similar to [17, 19], authors rely on the invariance
of the evolution operator (mentioned above) the difference of which to our approach is discussed above.
To compute the shifts, authors consider residual minimisation (5.3) and label the snapshot u® (-, g, i;)
as the template. For all time instances, authors choose the template as the initial data which results in
inaccuracy if, with time, the solution changes dramatically in comparison to the initial data. This is true
for non-linear problems, and therefore our template (i.e. u™(-,t, /1)) is both (¢, u)-dependent. For the
same reason, the authors in [23] also consider time-dependent templates.

As to our knowledge, the idea of calibrating the manifold My, first appeared in [4]. For Burger’s
equation, authors consider a shifted POD-basis as the non-linear approximation space and compute the
ROM using residual minimisation. The shifts are computed iteratively and online, the computational
cost of which is unclear. To speed-up residual minimisation, authors approximate the L? inner-products
appearing in the residual, which is different from minimising the residual on a set of collocation points.

7. Numerical Experiments

We consider the following two different test-cases. The details of spatial and temporal discretization
are test-case dependent, and are discussed later.
(i) Test-1 (1D Linear advection): Linear one-dimensional advection equation with parameterised
advection speed

(7.1) Opu(-, - p) + B(w)Opul-, -, ) =0, on Q x [0,T].
We consider S(u) = exp(u)/5, and choose P € [1,3]. We set = [0,4] and T = 0.8. As the

initial data we consider

(72) iy = {0 (1 (1= (52)7)).

0, else

If(;l
02

<1

One can check that for §; = 0.5 and do = 0.2, ug is smooth and compactly supported inside €.
13
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(ii) Test-2 (1D Wave equation): One dimensional wave-equation with parameterised wave speed
M. M., .
(ICENT) utV () _( 0 1
(7.3) O ( u® (1) )+A5'm ( u® (1) ) =0, on Q x [0,7], where A = ( 20 )
Q=

We choose P = [1, 3], [—2,2] and T = 0.45. Our initial data is

u(()l)(m, p) = sin(2m x x) x 1j_g.5,0.5, u(()Q)(a:,u) =0.
Although the above PDE is a system of equations, we write it as a system of two indepen-
dent scalar conservation laws. To each of these conservation laws we independently apply the
framework developed in the earlier sections. The details are discussed later.

(iii) Test-3 (2D Burger’s equation): Two dimensional Burger’s equation with parameterised
initial data

1 1
(7.4) Opu(-, -, 1) + anu(-, )+ §8yu(-, )2 =0, on Qx[0,T].

We choose P =1,3], Q = [0,1] and T = 0.8. The initial data is given as

(75) wole, 1) = uxexp( 1/( (nx mn) )) Lzl <1

0, else

We set 6; = (0.5,0.5)7 and 6, = 0.2. Note that the above initial data is the multi-dimensional
version of the one considered above in (7.2).
In the following discussion, with S-ROM (snapshots based linear ROM) and SS-ROM (shifted snapshots
based non-linear ROM) we refer to a ROM computed using the approximation space A} and X
respectively. Here, A7! is the approximation space based on dictionaries defined as [1]

(7.6) Xl o= span{u® (-, ty, ;) : j€{1,...,M}}.
For a given u € P, we quantify the accuracy of a ROM with the space-time L?—error

(7.7) Erom (1) = [[u™ (-, ) = u™ (-, ) | L2 @x 0,1

where “Z could result either from S-ROM or SS-ROM. We consider the same parameter samples {f; }i=1,... m
for both the methods.

We implement our method in matlab2018a. To solve the least-squares problem (3.9) we use the
matlab function lsqminnorm. None of the online computations use parallelization. All the simulations
are run on a computer with two Intel Xeon Silver 4110 processors, 16 cores each and 92GB of RAM.

7.1 Test-1: We choose a constant time-step size of At = 4/(n, x ((3)), which satisfies (2.4)
and ensures the stability of the FOM. Although not proven, the same time-step was sufficient to ensure
the stability of the solution resulting from residual minimisation (3.9). Recall that n, is the number of
spatial elements and its value is given later.

Study of shift computation: Consider two parameter instances ji; = 1 and jio = 3. The exact
solution to linear advection (7.1) satisfies w(x,t,u) = uo(x — B(u)t). Therefore, u(x,t, fiz) = u(x —
€ (fig, fi1, t), t, f11) where c®*(fia, fi1,t) represents the exact shift value given as

(7.8) (2, pu, t) == (B(f2) — B(fin)) x t.

Let ¢(fia, fi1, tx) denote the shift resulting from the minimisation problem (5.5) with B(fs, fi1,tr) com-
puted using feature matching as described in section 5. We label such a B(fs2, fi1,tx) as By, Fig 2a
shows the error |c®®(fia, fi1,tx) — c(fi2, i1, tx)| computed with n, = 10%. The error is either zero or equal
to the grid-size 4/n,. This is acceptable because all the shift values in By, are integer multiples of n.
Instead of By, we can choose B(fiz, fi1,tr) to be Ba, that contains shifts that are integer multiples
of Az and lie inside [—n, Az, n,Az]. Note that the set Ba, is also used in [23] for shift computation.
The size of Ba, scales with n, whereas that of By, is independent of n;, which contains the location of
a single local maxima in ug. Therefore, as n, increases, using By, instead of Ba, results in a significant

14
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38 speed-up while solving the minimisation problem (5.5). The speed-up is shown in Fig 2b. For smaller
39 values of n,, using By, is more expensive than Ba, because By, requires an approximation to the
540 derivative of the solution, which dominates the cost for a small n,.

541 There are time instances beyond which ™ (-, y, ji1) and u” (-, t1, fi2) are L2-orthogonal. As mentioned
542 earlier, L?-orthogonality is problematic for fixed-points algorithms that solve (5.3) because it results in
543 flat regions in the residual R given in (5.3). However, the enumeration based approach does not rely on
544 a fixed-point iteration and provides a solution despite of the L?-orthogonality.

-3
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45+
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92]
g
8
53'57

0 200 400 600 800 0 200 400 600 800 1000

time-step Ny

(a) (b)

Figure 2: Results for test-1. (b) the time variation of the error in shift computation; (c) speed-up in shift
computation. Fig-(b) has a y-axis on a log-scale.

545 Comparison to S-ROM: We study the error Froas, defined in (7.7), resulting from SS-ROM and
546 S-ROM. We choose n,, = 4 in (3.1) and M = 2 in (3.6) which results in a piecewise linear approximation
547  for the spatial transform. Moreover, n,, = 4 results in four parameter elements which we choose uniformly
548 as

(7.9) T, =[1,1.5], Zo = [1.5,2], Z3 = [2,2.5], Z, = [2.5,3].
549  With M = 2 we need two parameter samples in each of the parameter elements. We let the endpoints of

the parameter elements to be these parameter samples. At 45 uniformly sampled points inside P, Fig 3a
compares the error Egrons (1) resulting from SS-ROM and S-ROM.

We first understand the result for SS-ROM. Let [i; and fis be the sample parameters that correspond to
the endpoints of some Z,,). See (3.2) for a definition of v(u). Let c**(p, fi;,1) be as given in (7.8). Let

NN =

%

ot Ot Ot gr Ot Ot Ot
gt Ot Ot Ot Ut Ot Ut
w

@M (. fi;, tx) be the same as the Lagrange interpolation ¢™ (u, fi;, tx) given in (5.6) but with c(fi;, fi;, tx)
5 replaced by ¢°®(fi;, fi;, tx). By triangle’s inequality, we can bound the error [¢M (u, fij, t5) — ¢ (1, fis, ti;)|
6 as

(7 10) |CM(/1'7 ﬂj7 tk) - Cem(:uv ﬂjvtk”SlCeLM(ﬂu ﬂjv tk) - cez(,u’ ﬂj» tk)|

+ |cewa(:u7,aj7tk) - CM(u7ﬂj7tk)|'

Our previous study shows that |e(fi, {5, tk) — ¢ (fii, 1, tx)| is O(Ax), which implies the same for

M (1, i tn) — ™ (s fi, tr)|. Therefore, ignoring errors from spatial discretization and using standard
J J

9 error bounds for Lagrange interpolation, we find

ot ot

ot ot Ot
0]

S

(ps fig )| <[ M (g te) — € (s iy )|
<K x (p— f11) x (fiz — p) < [B'(€)],

560 where £ € Z,(,,), K is a positive constant independent of x4 and M, and 3'(§) = exp(€)/5.
561 From the bound in (7.11), two conclusions follow. Firstly, for a given (), the bound is maximum at
562 the midpoint u = (fi1 + fiz)/2. Secondly, for a given p — fi; (or equivalently fio — p), exp(&) increases with
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563
564
565
566
567
568
569

570

Parameter element | 1 | 2 | 3 | 4
Error ratio (Min/Max) | 2.2/4.0 | 2.0/5.50 | 3.0/5.6 | 1.7/4.4

Table 1: Let ey () and €1(p) denote the value of Eron (1) computed with S~ROM and SS-ROM, respectively.
Then, the mazimum error ratio in the i-th parameter element I; is |le1| o (z,)/l|€1l|L(z,). Similarly,
one can define the minimum error ratio.

¢ and since ¢ increases with y(u), the bound increases with v(u). We expect the bound for Eronr ()
resulting from SS-ROM to behave the same as the above error bound; similar results can be found in [30].
The result in Fig 3a corroborates our expectation. The error Erops is the maximum at the midpoint of
every parameter element, and, for a given (u — fi1), the error increases with v(u).

Solution from S-ROM accurately approximates u® (-, tz, ) if it is not dominated by transport with
respect to the snapshots u®¥ (-, ¢, 1) and u® (-, g, fiz). In our context, the shift (3(u) — B(fi1))t captures
the transport of u™ (-, ty, fiy) to u¥ (-, tx, ). Therefore, we expect the error Eronas (i) from L-ROM to be
behave as

(7.12) min{B(u) — B(fi1), B(A2) — B(w)},

where (1) = exp(p)/5. Similar to the bound in (7.11), for a given v(x), min{exp(u) —exp(fi1), exp(fi2) —
exp(p)} is the maximum at g = In(exp(fi1)/2 + exp(fi2)/2) resulting in Froa (1) having a local maxima
at this point. Note that for our parameter domain, these points of local maxima are close to the mid-
points of Z,,y. Moreover, for a given (u — fi1), min{exp(u) — exp(fi1), exp(fi2) — exp(p)} increases with
~(p) resulting in Froas (@) increasing with v(u).

The maximum and the minimum error from the S-ROM, in each of the parameter elements, is at least
3 and 1.5 times higher than that from SS-ROM, respectively. Ratio of the maximum/minimum value of
the error from the two methods is given in Table 1. The shifting in SS-ROM calibrates the snapshots
that results in its higher accuracy as compared to S-ROM. Consider Fig 3d, which shows the ROM for
p = 2.75 computed with snapshots taken from M,, . After (approximately) ¢ = 0.2, the snapshots become
L?(Q)-orthogonal, which results in two wave-fronts in the ROM moving with different speeds. These two
wave-fronts correspond to the two spatially disjoint rays seen in Fig 3d, and their speeds correspond to
the (z,t)-slopes of these rays. They miss-represent the single wave front in the FOM (see Fig 3b), which
has a wave speed in between of the two wave-fronts. In contrast, the snapshots from M, ;, accurately
capture the single wave-front in the FOM; see Fig 3c.

Convergence with (n,, M): For different values of n,, (defined in (3.1)) and M (defined in (3.6)),
we compare the error || Erons| e (p) resulting from SS-ROM and S-ROM. We start with n, = 1 and M = 2,
and perform five uniform refinements of the parameter domain where we increase each n, and M by one.
To estimate || Erons|| 1 (p), we consider 150 uniformly placed samples inside P. We choose n, = 2x 1073,

The results are shown in Fig 4a. Clearly, the error from SS-ROM appears to converge to zero much
faster in comparison to the error from S-ROM. As studied above, the error from SS-ROM includes the error
in shift computation that results from spatial discretization. Therefore, under a further increment of n,,
it might be possible to get error values lower than those reported in Fig 4a.

Study of hyper-reduction: Let the parameter elements be as given in (7.9). We fix u to 2.75
and choose n, = 103. We compute the set {&z, 1, }iz1.2.k=1... x given in (4.10) for fiy = 2.625 and
fio = 2.8750. Both fi; and fis belong to Zs and not to {fi;}i=1,2. Using {&x, +, }i=1,2,k=1,..., K, We estimate
the set {&,,+, }x=1,... k using the relation in (4.11). Let N;L“’fk be as given in (4.4). We choose the same
N;}Z”t’k for all time instances and for all f;’s. We denote this N}Zf’fk by N™P_ Starting with NP = 5,
we increment it by N9 = 5 till it reaches 200. Note that a value for N"¥P implies that HEntr = Nhp,
Since &, +, is a union over the elements of &, 1, (see (4.11)), it is not necessary that #&, ;, = N"P. To
measure the deviation of #&, ;, from n,, we define

B Zszl #Suvtk )

(7.13) N :=n, e

The minimum value of N is zero and at this minimum value, for all time instance, #HEut, = g e, we
select all the grid-points as our collocation points.
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Figure 3: Results for test-1. (a) Erowm, given in (7.7), resulting from S-ROM and SS-ROM. (b) FOM, (c)
SS-ROM, and (d) S-ROM for n = 2.75. Fig-(a) has a y-azxis on a log-scale.
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Figure 4: Results for test-1. Error decay under (n,, M)-increment. Y-azis on a log-scale.

606 Let Eu,tk be as given in (4.13). As N = 0, we expect maxpe(1,.. K} E‘#,tk — 0. Fig 5a shows the

607 convergence of maxpe(1, ..k} By, with N. For the first few values of N, maXge(1,.. K} Eu,tk converges

608 slowly. However, (approximately) below N = 900, maxye(1,.. K} Eﬂ,tk converges fast and at a rate that
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is close to 200 with respect to N. Already with N = 900, we reach an error value of O(10~%). Note
that N = 900 corresponds to an average of n, — N = 100 collocation points per time-step, which is 10%
of the total grid-points. Recall that for u = 2.75 the error between the ROM and the FOM is O(1072)
therefore, an error of O(10~%) from hyper-reduction is acceptable.

For all the choices of N"P #&, , stays close to NP implying a coincidence of most of the points
in the union (4.10). Thus, even with a single parameter sample fi1, the set £, ;, remains almost the same
and we can get the same results as reported here. For the first few times-steps, Fig 5b shows some of
the entries in £, for N"P = 5. Similar to the solution (see Fig 3b), the collocation points shift to
the right as time progresses and follow the moving wave-front of the solution. Note that the shift in the
collocation points is not the same for all time-steps. This results from an error in shift computation,
which is of O(Ax), and from the error in approximating c(u, fi;, tx) in steps remark 9. At the expense
of some offline cost, one can remove the later source of error by computing the shifts c(u, fi;, tx) using
Lagrange interpolation.

We compare a gappy-POD/DEIM approximation of the residual to our approach. Such a DEIM-
approximation results in the operator Py, ., given in (4.14). Here, for simplicity of notation, we suppress
the projection operator in Res. We compute the residual Res(u™ (-, tg+1, 1), u™ (-, tx, i), given in (3.8),
for 100 equally spaced parameter points inside Z,. Denoting these points by {fi;}i=1,....100, we define the
snapshot matrix

(714) utk+1 = (Res(u"(-, tk+17 ﬂl)a un('v tka ﬁl))7 e ,RGS(U/”(', tk+1; ﬁ100)7 un('7 tkn ﬂlOO))) .

For every residual Res(u" (-, ¢, i11),u™(+,t, i11)), we can define a piecewise constant function res(x, u,t) as

(7.15) res(-,t, ) := (Res(u" (-, ¢, ), u" (-, t, 1)), @)

where @ is a vector containing all the basis functions of a FOM and is given in (2.1). For ¢ = 0.8 and
p € Ly, res(+,t,-) is shown in Fig 6a. We scale all the values with ||7(:,%,-)| L= @xp). Clearly, similar
to the solution (see Fig 3b), which shifts to the right as t-increases, the residual also shifts to the right
as p-increases. This results in a slow decay in the singular values of Uy, ,,. Fig 6b shows these singular
values for 11 = 0.8. Although not shown in the plot, the decay gets slower as time progresses.

With a greedy-algorithm we compute the collocation points &, ., corresponding to the collocation
matrix P, ., given in (4.14). Details of the greedy-algorithm can be found in [5]. We perform 5 greedy
iteration and in each of the iteration, we select 20 collocation points. This results in a total of 100
collocation points, which is equivalent to choosing NP = 100. Owing to the slow decay of singular
values of Uy, ., we choose Uy, , appearing in (4.14) as all the POD modes of U, _ , .

Fig 6¢ shows the collocation points for ¢ = 0.8, over-plotted on the residual for (u,t) = (2.9,0.8). The
greedy-algorithm chooses points that are outside of the support of the residual while leaving out points
where the residual is still non-zero. For the case shown in Fig 6¢, almost 30% of the collocation points
lie outside of the residual’s support. This is because the greedy-algorithm selects the same collocation
points for all the p-values and does not adapt them to accommodate for a shifted residual. Therefore,
we expect the error Eu,tk ., from a DEIM approximation to decay slowly with N = n, — N"P_ This
is also expected from the slow singular value decay of the snapshot matrix U, ,,. In our approach, we
shift the collocation points to the right with the solution. As a result, these points only populate the
support of the residual. This is shown in Fig 6¢. For both the DEIM approximation and our approach,
we compute the error maxpei,.. x} EA,M,C at 45 uniformly placed parameter points inside Z,. For the
reasons mentioned above, the DEIM approximation has an error that is at least O(10%) of our approach.

7.2 'Test-2: Using the eigenvalue decomposition of the matrix A, we can express the wave-
equation (7.3) as

(., (H)¢(...

w (- ) po 0 wi (e )

7.16 0 _ + ( > 10) ( _ =0,

(7.16) t( W) (o) ) 0 —u )%\ WO ()

where w(®) are the characteristic variables. We reduce the above two equations independently using the

framework discussed in earlier sections.
To account for the error in w™) (-, -, 1), we modify the error Erons(p) given in (7.7) to

(7.17)
2 - _
(Erom(p)” = ||w(+)’N(', ) = w(+)’n(" "M)H%?(Qx[o,T]ﬁ‘Hw( )’N('a ) = w' )’n('a ',M)||2L2(Qx[o,T])-
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Figure 5: Results for test-1. (a) convergence of maxpeqi,.. N} Eu,tk with N for p = 2.75; (b) entries of
Eut, for the first few time steps. Fig-(a) has a y-axis on a log-scale.

654 Above, wE N (- -, u) and w®) (-, 1) represent the FOM and the ROM of w(*)(-,-, i), respectively.
5 We choose n, =103, At =4/(n; x 3), n, =1in (3.1), and M = 2 in (3.6). This results in a piecewise
6 linear approximation for the spatial transform. n, = 1 results in a single parameter element given as
657 Iy =[1,3]. Welet fiy =1 and fiz = 3, where fi; are as given in (3.5).

8 We compute Frops at 45 uniformly placed parameter points different from the parameter samples fi;
659 and fiz. The error values at these parameter points resulting from SS-ROM and S-ROM are show in Fig 7a.
660 Similar to the previous test case, SS-ROM performs much better than S-ROM and results in an error that
661 is at least an order of magnitude lower than that resulting from S-ROM. The governing equations for w™
662 and w~ (given in (7.16)) are the same as the linear advection equation (7.1) with the advection speeds
663 By (w) = pand B_(u) = —p, respectively. Therefore, the explanation for the qualitative behaviour of the
664 error is similar to the previous test case, and follows from the bound in (7.11) and (7.12).

665 The two transport modes of the current problem are shown in Fig 7b. In SS-R0OM, the shifting of
666 snapshots results in an accurate approximation of the two transport modes, see Fig 7c. In contrast, the
667 result from S-ROM is a linear combination of two snapshots and since each of these snapshots have two
668 distinct transport modes, their linear combination results in four distinct transport modes. These four
669 transport modes are observable in Fig 7d after (approximately) ¢ = 0.3. Results from hyper-reduction
670 are similar to the previous test case and are not discussed for brevity.

671 7.3 Test-3: The previous test cases were one dimensional for which a FOM is already efficient.
672 This makes it difficult to compare the efficiency of the FOM to that of the ROM, which we do so with
673 the current test case. This test case also brings out a limitation of our method, which we discuss in
674 detail later. We set n, =1 in (3.1) and M = 2 in (3.5). As sample parameters we choose fi; = 1 and
675 fiz = 3. For spatial discretization we choose n, = 200, which results in a spatial grid with 200 x 200
676 elements. For temporal discretization we choose At = 1072, Previous test cases show that choosing
677 N™P = 0.1 x n¢ number of collocation points for hyper-reduction provides acceptable results. Motivated
678 from this observation we choose NP = 4000. As sample parameters for hyper-reduction we choose
679 i1 = 1.7 and fie = 2.7, both of which do not belong to {f;}i=1,2. To study the error resulting from the
680 ROM and to analyse its performance, we compute the ROM for all 4 € {1.2,1.4,...,2.8}. For computing
681 the results from S-ROM, we do not use any hyper-reduction.

682 We define the speed-up S as

. run-time of the FOM
~ run-time of the online phase of the ROM’

683 Recall that the details of the online phase of SS-ROM are given in Algorithm 3.2. For SS-ROM, this speed-
684 up is shown in Fig 8a. The speed-up is atleast 400, and results from introducing the operator P, 4, .,
685 in the residual minimisation (4.1), which reduces the cost of both, evaluation of the residual and then
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Figure 6: Results for test-1. (a) The residual res(-,t,-) given in (7.15) for p € Iy, x € Q, and t = 0.8.
(b) Singular values of the matriz Uy, given in (7.14) for tpy1 = 0.8. (c) The location of the collocation
points computed with a greedy DEIM approach and the current approach over-plotted on the residual for
=29 andt=0.8. (d) Comparison of maxy=1, . kg Eu,tk- Fig-(b) and (d) have a y-azis on a log-scale.

its minimisation. Although we choose the same NP and At for all parameter samples, the speed-up is
not constant along P. We provide the following explanation. The set of collocation points &, 4, (given
in (4.11)) is a union over the set in {€z, +, }i=1.2, where the size of each of the sets is N"¥P. Taking a
union results in #&,+, that is (in practice) slightly different from NP and that changes with (y,t).
This results in the speed-up being non-constant along P.

Fig 8b compares the error Eroas (i) between SS-ROM and SS-ROM. Similar to the previous test cases,
error from both the methods drops close to the endpoints of the parameter domain and is maximum close
the the mid-point. The error resulting from S-ROM is atleast 3.5 times higher than that resulting from
SS-ROM. Superior performance of SS-ROM results from shifting the snapshots and is also observed in the
previous test case.

As time progresses, the solution develops a shock. A part of the shock can be seen in the cross-section
(along x = y) of the solution shown in Fig 9a. SS-ROM considers a span of shifted snapshots with a shift
that aligns shocks between the snapshots. As a result, SS-ROM accurately captures the shock location, see
Fig 9a. In contrast, S-ROM has the so-called staircase effect and wrongly captures the shock location. This
results from approximating the solution in a span of non-shifted snapshots with each snapshot having a
different shock location.
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Figure 7: Results for test-2. (a) Egom, given in (7.17), resulting from S-ROM and SS-ROM. (b) FOM,
(c) SS-ROM and (d) S-ROM of uV) (-, -, i) for u = 1.5. Fig-(a) has a y-axis on a log-scale. The results are
similar for u® (-, -, ).

7.4 Limitations: The previous test case brings out a drawback of our method. The support
of the initial data ug(-, 1) given in (7.5) does not change with p. This results in the solution having a
support, a part of the boundary of which, does not change with p. A part of this boundary is shown
in Fig 9a around = = 0.36. We refer to this location as the starting location of the support. Despite of
a difference in the shock locations, the starting location of the support is the same for every snapshot.
Therefore, S-ROM captures this starting location accurately. However, because we shift the snapshots in
SS-ROM, we capture the starting location of the support inaccurately.

The limitation of the method becomes clearer with the following example. Consider the one-
dimensional Burger’s equation, which is the same as (7.4) without the y-derivative, with the initial

data
2
uexp(—l/(l—(%l) )), %‘<1
_ 2
(718) Uo(.%') = —exp (_1/<1 _ (z;—jl) )) , m}_jl <1
0, else

We let ;1 = 0.5 and d; = 0.2. Let Q = [-2,2] and T = 1.0. Let P = [1,3] be discretized with one
parameter element i.e., n, = 1 in (3.1). Moreover, let M = 2 in (3.5). Let Q be discretized with n, = 10?
elements, and let At = 1073,

The FOM has two shocks, both of which are shown in Fig 10a for p = 2 and t = T'. Since in SS-ROM
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Figure 9: Results for test-3. FOM and the ROM along the cross-section x =y for u = 2.6 and t = 0.8.

the snapshots shift in one direction, we capture only one of the shocks accurately. Aligning the shock
on the right results in a lower L? error (i.e., R in (5.3)) than aligning the shock on the left. Therefore,
SS-ROM accurately captures the shock on the right but has a staircase effect at the shock on the left.

Since the negative part of ug(+, 1) is independent of p, the shock location on the left is p-independent.
Therefore, S-ROM captures it accurately. However, it is highly inaccurate at the right shock and shows the
staircase effect. Despite the inaccuracy from SS-ROM at the left shock, it has an L2-error of 0.06 that is
less than the L2 error of 0.08 from S-ROM. However, the benefit of using SS-ROM over S-ROM is not much,
and both the ROMs perform poorly.

8. Conclusion

We considered a transformed snapshot based non-linear approximation for solution manifolds of hy-
perbolic equations. To compute the ROM, we used residual minimisation. Projecting the residual onto
a low-dimensional linear space, which is usually a span of POD-basis, usually makes the residual min-
imisation efficient. However, computational examples showed that such a projection could be ineffective
for hyperbolic problems. Broadly speaking, this is because (similar to the solution) the residual has a
moving wave-type behaviour. To circumvent a projection, we considered hyper-reduction that evaluates
and minimises the residual on a subset of mesh-elements or the so-called collocation points. For the
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Figure 10: Results that show the limitation of SS-ROM. Computed with the one-dimensional Burger’s
equation with the initial data as given in (7.18). The solutions are for p =2 and t = 1.

computation of the collocation points, we considered an offline and an online stage. Offline, we computed
the collocation points for a set of training parameters by minimising a bound on the L2-error of our
ROM. Moreover, online, we transported the set of collocation points computed offline.

As an instance of our non-linear approximation space, we considered a span of shifted snapshots with
local in time and parameter shifts. We considered shifts that align shocks and local minima/maxima in
the solution while minimising the L2-error between the shifted snapshots. We were efficient with our shift
computation for solutions that do not have a very large number of shocks and local minima/maxima.
Moreover, for a certain class of problems, our algorithm provides a shift between snapshots that have
arbitrarily separated parameters.

With numerical experiments, we compared the accuracy of our non-linear ROM to a ROM that uses
the span of snapshots as its approximation space. The non-linear ROM had an L2-error that was 2 to 10
times lower than that resulting from a snapshots based ROM. For a test-case involving the 2D Burger’s
equation, as compared to the FOM, the non-linear ROM showed a speed-up of at least 400. The speed-up
was a result of hyper-reduction, which reduced the cost of both the evaluation and the minimisation of
the residual.
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Appendix A. Proof of Lemma 5.1. By definition
(®,10,14,,,0(t41)) = Res(M,u e, v(tj41), e, v(t5)) + (@, ¢ v(t5)) + At (@, LY (I, ¢, 0(t5))) -
where j € {1,..., K — 1}. The result for j = 0 is trivial. Also,
(@, uN (s tjq1, 1)) = (DN (15, 1)) + Aty (@, LY (u (- 85, 1))

Subtracting the above two relations, taking the R norm on both sides and using triangle’s inequality
provides

H<(I)7UN('7tj+1v:u) - Hu,tj+1v(tj+1)> ”]RNS H<(I)7UN('7tkv/~L) - Hltytjv(tj»
(Al) +Atj <¢)7L5(UN('7tj7/’L)) - L;Jy(Hu,tjU(tj)»HRN

+ HReS(H#ytj-H'U(thrl)v H#,tjv(tj))HRN'
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Using Lipschitz continuity of Id +At; Lﬁ’ provides

||<q)7uN('atkwu) - H/J,tjv(tj)> + Atj <(D7 Lﬁ[(uN('atja ;U')) - L;]Y(Hﬂﬁtjv(tj))>“RN

A2
( ) < O||<(I)7UN('7tj7M) - Hu,tjv(tj)> ||]RN-

Substituting the above bound into (A.1) provides

||<(I)vUN('7tj+17M) - Hﬂ,tj+1v(tj+1)> ”]RN SCH<(I)7UN('7tj7:U’) - H/J,tjv(tj)> H]RN

(A.3)
+ HReS(Hﬂytjﬁ-lv(tj-l-l)a H/u‘7tj U(tj)) ”RN

The result follows by applying recursion to the above bound.
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