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CONVERGENCE ANALYSIS OF GRAD’S HERMITE EXPANSION FOR LINEAR
KINETIC EQUATIONS

NEERAJ SARNAL* JAN GIESSELMANN?, MANUEL TORRILHON!

Abstract. In (Commun Pure Appl Math 2(4):331-407, 1949), Grad proposed a Hermite series expansion for approxi-
mating solutions to kinetic equations that have an unbounded velocity space. However, for initial boundary value problems,
poorly imposed boundary conditions lead to instabilities in Grad’s Hermite expansion, which could result in non-converging
solutions. For linear kinetic equations, a method for posing stable boundary conditions was recently proposed for (formally)
arbitrary order Hermite approximations. In the present work, we study L2-convergence of these stable Hermite approxi-
mations, and prove explicit convergence rates under suitable regularity assumptions on the exact solution. We confirm the
presented convergence rates through numerical experiments involving the linearised-BGK equation of rarefied gas dynamics.

Introduction

Evolution of charged or neutral particles (under certain conditions of interaction) can be modelled
by linear kinetic equations. The explicit form of these kinetic equations depends on the physical system
they model and many of these forms have been extensively studied in the past; see [11, 12, 14, 28].
Broadly speaking, different forms of kinetic equations have mainly three differentiating factors: the space
of possible velocities of particles, i.e., the so-called velocity space; the external or the internal forces that
act on the particles; and the collision operator that models the interaction between different particles. In
the present work, we are concerned with linear kinetic equations that have the whole R? (1 < d < 3) as
their velocity space, have no external force acting on the particles and have a collision operator that is
bounded and negative semi-definite on L?(R?). Such kinetic equations usually arise from the kinetic gas
theory after the linearisation of the non-linear Boltzmann or the BGK equation [4].

Mostly, an exact solution to a kinetic equation is not known and one seeks an approximation through a
temporal, spatial and velocity space discretization. In the present work, we analyse a Galerkin-type veloc-
ity space approximation where we approximate the solution’s velocity dependence in a finite-dimensional
space [13, 20]. Our finite-dimensional space is the span of a finite number of Grad’s tensorial Hermite
polynomials, which results in the so-called Grad’s moment approximation [14]. We consider initial bound-
ary value problems (IBVPs), and equip the Hermite approximation with boundary conditions that lead
to its L?-stability [21].

The convergence behaviour of moment approximations, particularly for IBVPs, is not very well-
understood. Lack of understanding originates from expecting a monotonic (and test case-independent)
decrease in the error as the number of moments are increased but such a decrease is usually not observed
in practise [26]. It is known that convergence of Galerkin methods is solution’s regularity dependent,
which is in-turn test case dependent. Therefore, one possible way to understand the test-case dependent
convergence of moment approximations is to reformulate them as Galerkin methods [9, 10, 23]. We use
such a reformulation for the Grad’s moment approximation to prove that it convergences (in the L?-sense)
to the kinetic equation’s solution.

Reformulation of a moment approximation as a Galerkin method allows us to use the following
(standard) steps for convergence analysis. Firstly, we define a projection onto the Hermite approximation
space and use it to split the approximation error into two parts: (i) one part containing the error in the
expansion coefficients (or the moments), and (ii) the other part containing the projection error. Secondly,
we bound the error in the expansion coefficients in terms of the projection error. To develop this bound, we
exploit the L2-stability property of the Hermite approximation, which is possible by defining the projection
such that it satisfies the same boundary conditions as those satisfied by the moment approximation. We
complete our analysis by proving that the projection error converges to zero.

It is worth noting that the orthogonal projection onto the approximation space does not satisfy the
same boundary condition as the numerical solution and, thus, the L2-stability results are not available.
Indeed, from a technical perspective, defining a suitable projection operator is a key contribution of this
work.

In previous works [20, 23], for kinetic equations with an unbounded velocity space, authors have
analysed convergence of Galerkin methods that use a grid in the velocity space. Although easier to
implement, such methods fail to preserve the Galilean and the rotational invariance of kinetic equations.
In contrast, Grad’s tensorial Hermite polynomials cannot be mapped to a velocity space grid but they
do preserve especially rotational invariance of kinetic equations. This allows for an approximation that
is physically more sound. To the best of our knowledge, present work is the first step towards analysing
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the convergence of a rotational invariant Galerkin method for IBVPs involving kinetic equations with an
unbounded velocity domain.

Other approximation schemes that lead to a rotational invariant approximation (for both bounded
and unbounded velocity spaces) use spherical harmonics instead of Grad’s Hermite polynomials; see
[2, 5, 10]. Preliminary analysis shows that our framework is extendable to such approximations. Indeed,
using our current framework one can even analyse the convergence of a general rotational invariant
Galerkin scheme for a general rotational invariant kinetic equation considered in [1]. Moreover, our
framework has an extension to linear approximations of the non-linear Boltzmann equation [13]. We
leave an extension of our framework to other linear kinetic equations as a part of our future work.

A summary of the article’s structure is as follows: the first section discusses the kinetic equation and
its Grad’s moment approximation; the second section discusses the projection operator and contains the
main convergence result; the fourth section discusses an example of the linear kinetic equation that arises
from the kinetic gas theory and; the fifth section contains our numerical experiment.

1. Linear Kinetic Equation

With f: (0,7) x Q2 x R? — R we represent the solution to our kinetic equation where €2 is the physical
space, (0,T) is a bounded temporal domain and R? is the velocity space. For simplicity, we focus most of
our discussion on the case for which the spatial domain is the open half-space Q := R~ xR4~1 (1 < d < 3).
In subsection 2.2 we discuss how our framework can be extended to general C? spatial domains. With
V = (0,T) x Q we represent the space-time domain and with D := V x R% we represent our space-time-
velocity domain. With Vi, := (04, 04y, ..., 0z,) we denote the gradient operator along the space-time
domain and using it we define the following operator

d
L:=0 1817 y Rd,
a1 t+;§ —Q, E€

=(1,8) - Vi — Q,
where Q : L?(RY) — L?(RY) is the collision operator. The second form of the above operator will be
helpful in understanding the regularity of a strong solution of an IBVPs involving £. We restrict our

analysis to the case for which the operator @) satisfies the conditions enlisted below. Later, in section 3,
we give examples of collision operators that satisfy the assumption below.

ASSUMPTION 1. We assume that Q : L?>(R?) — L2(R%) is: (i) linear, (i) bounded, (iii) negative
semi-definite, and (iv) self-adjoint.

We consider £ as a mapping from H. to L?(D) where H is the graph space of £ and is defined as
(1.2) Hp:={ve L*D) : Lve L*(D)} where ||f|7,:=IfZ2(p)+ILFII72(p)-

For IBVPs involving the operator £, we need to define trace operators over H,.. To define these trace
operators, we first define the following boundaries of the set D = (0,7) x Q x R?

SE=(0,T) x 097, VE={T*}x QxR oD:=¥tus uVtuv-,

where we set T+ = T and T~ = 0. Moreover, an*L is a result of splitting 9Q x R into two non-overlapping
parts and is defined as: 89? = 90 x R* x R?!. Thus (’“)Qg+ and (“)Qg are sets containing points in

0Q x R? corresponding to outgoing and incoming velocities, respectively. Using these boundary sets, in
the following we define the relevant trace operators. A detailed derivation of these operators can be found
in [28].

DEFINITION 1.1. Traces of functions in Hy are well-defined in L?(0D,|&1]), d.e., in the L? space of
functions over D with the Lebesgue measure weighted with |€1|. We denote the trace operator by

vp : He — L*(0D,|&).

To restrict yp to ¥ and ¥ = T U XY™, we define y=f = ypfls+ and vf = ypfls. Similarly, we
interpret f(TF) as f(TF) = vpfly+.
Using the above trace operators, we give the following IBVP
(1.3) Lf=0 in D, f(0)=fr on V7, v f=fi on X7,
2



1.1 Moments and Hermite polynomials

100 where fr € L>(Q x RY) and f;, € L*(Z7;|61]) N L2(R™ x R&L HY2(9Q x (0,T))) are some suitable
101 initial and boundary data, respectively. Here H 2 denotes a standard fractional Sobolev space. The
102 reason behind assuming f7 to be in L2(Q x R?) and f;,, to be in L2(X7,|&;]) is clear from the definition
103 of trace operators whereas, the assumption that f;, € L>(R™ x R?~1; H'/2(9Q x (0,T))) will be made
104 clear in assumption 2.

105 We stick to strong solutions of the above IBVP and we define them as follows [28].

106 DEFINITION 1.2. Let f € Hy where Hy is as given in (1.2). Then, f is a strong solution to the linear
107 kinetic equation if it satisfies
188 (0, Lf)p2py =0, ¥V vel*D), v f=fin, [(0)=[r.

110 It has been shown in [28] that the IBVP (1.3) has a unique strong solution and for our convergence
111 analysis, we will make additional regularity assumptions on this strong solution. We start with defining
112 the notion of moments.

113 1.1 Moments and Hermite polynomials We define tensorial Hermite polynomials with
114 the help of the multi-index 8 as
d

115 (1.4) Yaw (§) = H He g (&), BY = (5¥)7~-~75£;)) ,

p=1
116 where, the Hermite polynomials (Hey) enjoy the property of orthogonality and recursion

1 €2 d

117 (1.5a) NoT: /RHei (§) He;j (£) exp <—2) d§ =0d;; = /Rd Yam g fod§ = pl;[l%émﬁém
11§ (1.5b) Vi+1He 1 (§) +ViHe; 1 (§) = EHe; (€).
120 Above, fj is a Gaussian weight given as
13 (1.6) fo(€) = exp (=€ -€/2) /Var.

123 The quantity |8 |2 is the so-called degree of the basis function 1. Below we define the [|3(]];:-th
124 order moment of a function in L?(R%).

5 DEFINITION 1.3. Let n(m) represent the total number of tensorial Hermite polynomials (i.e. Yzu)(§))
6 of degree m and let 1, () € R™™) represent a vector containing all of such basis functions. Using 1y, (£),
7 we define A, 0 LH(RT) = R™™) as: Ay (r) = [ou vV oUm (E)r(€)dE, Vr € L2(RY). Thus, Ay, (r) represents
8 a vector containing all the m-th order moments of r. To collect all the moments of r which are of order
129 less than or equal to M (m < M ), we additionally define

! /

30 Unr(€) = (Wo(),1(8)'s- - vm(§)'), An(r) = Ro(r), Aalr)', - Am(r)')

132 where WUy (&) € R=Y and Ay L2(RY) — REY with =M = M= n(m) being the total number of
m=0

133 moments. Above and in all of our following discussion, prime (' ) over a wvector will represent its
134 transpose.

s
L

135 1.2 Regularity Assumptions For further discussion we recall that V = Q x (0,7) and
136 D =V xR% With C*([0,T]; X) we denote a k-times continuously differential function of time with values
1357 in some Hilbert space X. We equip C*([0,T]; X) with the norm ||g||cxjo,77,x)= max;<i[|0] gllcoo,11:x)
138 where |[glcojo,7;x)= maxe(o,rllg(t) | x-

139 To capture velocity space regularity of solutions, we make use of the Hermite-Sobolev space Wk (R?)
140 which is the image of L2(R?) under the inverse of the Hermite Laplacian operator (A )" = (—2A+31&-6)*;
141 see [25] for details. One can show that a tensorial Hermite polynomial (¢)5m) ) is an eigenfunction of Ay
112 with an eigenvalue of (2m + d) and therefore, one can define norm of functions in L2?(€2; Wk (R%)) as

oo 1/2
143 ||f||L2(Q;W}§(Rd)):: <Z (2m + d)zkH)‘Tn(f(tv 3 '))||2LZ(Q;R7L(NL)))> .
144 m=0

145 For further discussion we assume that the solution to our IBVP, along with its derivatives, lies in
116 CO([0,T); L*(Q; WE(R?))) for some k. We summarise this assumption in the following.
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ASSUMPTION 2. Let f be a strong solution to the kinetic equation (1.3). We assume that there exist
numbers k¢/° > 0, kf/o >0 and kfc/o > 0 such that

fe1° € €00, ) LA WE (RY))), (@0,.)/° € CO([0,T); L2 W (RY))),
(00, )% € OO0, T): L2 WE"(RY))), Vie{1,....d).

Above, (.)¢ and (.)° denote the even and odd parts (of the various quantities) defined with respect to &
i.e.

Fo(61,60,65) = 5 (F(60,62,65) — F(~60,60,69))» F¥(60,60,65) = 5 (F(60,60,65) + F(—61,6.69)).

Note that for simplicity we have assumed the same degree of regularity for all spatial derivatives.
Extending the forthcoming results to cases where different spatial derivatives have different degrees of
regularity is straightforward.

To understand the relation between a standard Sobolev space and the Hermite-Sobolev space, we
recall the following result [25] (see Theorem 2.1)

Wi (RY € H*(RY) C L*(RY), VEk >0,

where HF(R?) represents a standard Sobolev space and the last inclusion results from its definition.
Above relation and the assumption in assumption 2 trivially implies that the space-time gradient of f
(i.e. Vi f) is in L2(D;RI*1) which further leads to

(1.7) feL*RYGHY Q) NH.

Later, during the convergence analysis error terms will appear along the boundary (99 x (0,7))
involving the moments of the traces of f, i.e. Ay, (7f), and due to assumption 2 these error terms are
well-defined. Indeed, A, (vf) is an element of Hz (99 x (0,T); R™(™)). Note that for strong solutions,
the moments of the traces are not necessarily well-defined. The fact that vf € L2(R%; H=(9Q x (0,T)))
is required by our analysis is the reason why we assume the boundary data (f;, in (1.3)) to be in
L2275 1&)) N L2 (R~ x RI~L HY2(00Q x (0,T))), since for compatibility we want 4y~ f = f;, on ¥~.

1.3 Moment Approximation

Even and Odd basis functions: To formulate boundary conditions for our moment approximation
(discussed next), we first need the notion of even and odd moments.

DEFINITION 1.4. Let n,(m) and n.(m) denote the total number of tensorial Hermite polynomials
in Y, (&) which are odd and even, with respect to &1, respectively. Similarly, let ¥2,(€) € R™ (™) and
e, (&) € R (™) represent vectors containing those basis functions out of ., (€) which are odd and even,
with respect to &, respectively. Then, we define X2, : L>(R?) — R™ (™) and X6, : L*(RY) — R™(™) gs:
X (r) = <w$n\/%,r>L2(Rd) and A&, (r) = <w$;l\/%,r>L2(Rd) where v € L2(RY). To collect all the odd and
even moments of r which have a degree less than or equal to M (m < M ), we define

WE,(6) = (W7(€) 0s(€)s - w8 (€)) s W5s(&) = (W5 (&), w1(8),- - v (€)'),

/

ASr(r) = () A3(r) A () A () = G(r) A5 (r) - A5, ()

where A%, : L2(RY) — R=s", AS, : L2(RY) — RE, U2, (£) € RZ and S, (¢) € RE'. We represent the
total number of odd and even moments of degree less than or equal to M through ZM = Zf\il n,(i) and
EM = Zi]\io ne (1) respectively.

Expressions for boundary conditions become compact if we define the following matrices.

DEFINITION 1.5. We define

AP = (wser/Fo, (05) Vo)

’

We interpret (W31 Fo, (v5) Vo) | »
tween different elements of vectors \II;’,\/fT) and &9/ fo. Therefore, Aff’T) 18 a matriz with real entries

of dimension ZE X n.(r). Moreover by definition, Agpp’r) are the different groups of columns of Ag’Q) for
red{l,...,q}.

(pq) _ (1) 4(».2) (p,9)
ey A = (ApD AP, AP

as a matriz whose elements contain L*(R?) inner product be-

4



1.3 Moment Approximation

189 Recall that both Wg(£) and 97 (&) are vectors but W¢(§) contains all those basis functions that have a
190 degree less than or equal to g whereas, ¥ (&) contains basis function of degree equal to ¢. Similar to the
191 above matrices, we define the following matrices, which also contain the inner products between Hermite
192 polynomials but on a half velocity space.

193 DEFINITION 1.6. We define
: (pr) _ o /1. (e . Jf. (pa) _ (p,1) pP2) (p,q)
}(;:ﬁ Bw _2<\IJp an(wT) fO>L2(R+><]Rd_1)7 B\IJ - (Bw aBd) a"'7Bw ) ’

196 where prp’r) € RZexne(") . Similar to Afpp”') defined above, Bl(f"') € REexne(") gre the different groups of
197 columns of B,(lf”Q) forre{l,...,q}.

198 Test and Trial Space: To approximate the strong solution (see Theorem 1.2) to our kinetic equation
199 (1.3), we use a Petrov-Galerkin type approach where we approximate the velocity dependence in the test
200 space (i.e. L?(D)) and in the solution space (i.e. H.) through a finite Hermite series expansion (1.4).
201 Indeed, for our Petrov-Galerkin approach, we choose the following test (Xjs) and the solution space
202 (Hpy)

M

(L2(R% HY(V)) N HE) D Hy = {a- Ua/fo + o€ H'(V;RE™)},

w8 L*(D) > Xy ={a-Uy/fo : ae L2(V;RE")},

204  where W), is a vector containing all the Hermite polynomials up to a degree M, see Theorem 1.3. Since
205 o€ HY(V; REM), trivially, Hys is a subset of L?(R% H'(V)), which means that our Galerkin method is
206 conforming. However, the fact that Hy; C H, is not obvious and we prove it in the following result.

207 LEMMA 1.7. Let Hpp be as defined in (1.8) then, Hy C Hp.

208 Proof. Let f € Hyr. To prove our claim we need to show that £f € L?(D) for which we only need
209 to show that ¢ - V,f € L?(D); definition of Hj; and boundedness of Q on L?(R?) already implies that
210 O,f € L*(D) and Q(f) € L*(D). We show that ¢ - V,.f € L?(D) by proving that &;0,, f € L*(D) for all
211 i € {1,...,d}. For brevity we consider ¢ = 1, for other values of i result follows analogously. Computing
212 H§1611f||2L2(D) by expressing f as f = a - ¥/ fo, we find

213 1610z, fI72(py= 1(0z,0) Ada,atl|L2) < Cllda, |7, gy garr ) < 00,

214  where A = <\IIM\/]T0, g%\I’M\/ﬁ>L2(R4)' Above, the first inequality is a result of each entry of A being

215 bounded and the last inequality is a result of a € H'(V; ]REM). 0
216 REMARK 1. Note that for the BGK and the Boltzmann collision operator (given in section 3), v/ fo
217 1is the global equilibrium. Therefore, for both of these operators, an approximation in Hys (given in (1.8))

218 1s equivalent to expanding around the global equilibrium. This ensures that there exists a finite M such
219 that

559 (1.9) ker(Q) C span{¢za) \/%}Hﬁ(i)ull:l,.“,M‘

222 The equilibrium state of the kinetic equation belongs to ker(Q) and the above conditions allows one to
223 compute the same numerically. Note that for the linearised Boltzmann and the BGK operator, the above
224 condition holds for M =2 [/].

225 Collision operators of practical relevance known to us have \/fy (or fo depending on the scaling) as
226 their global equilibrium. If the global equilibrium is different from fq, say fo, then an expansion around fo
227 results in an approximation space different from Hy;. If this approximation space has basis functions that
228 satisfy the property of recursion (1.5b), orthogonality (1.5a), totality in L*(R?), even/odd parity (given
229 in Theorem 1.4), etc., then we expect to have results similar to what we propose here. Considering a
230  different approximation space is out of scope of the present work.

231 Variational Formulation: To develop our Galerkin approximation, in the definition of the strong
232 solution (given in Theorem 1.2), we restrict the test space and the trial space to X»; and Hy, respectively.
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This provides
Find far € Hyp such that

(110&) <U7‘CfM>L2(D) =0, Vv e Xy, AM(fM(O)) = AM(f[) on Q,
(1.10b) ASs(vfar) = R AN (v far) + G(fin) on (0,T) x 09,

where RM) ¢ RE"XE% g 4 g p.d matrix given as [22]

(1.11) ROM) = pM-M-1) (AEI/M,M_l)>_1.
Invertibility of the matrix A&,M’Mfl) follows from the recursion relation (1.5b) and is discussed in detail

in appendix-B. Moreover, G : L2(R~ x R9=1) — R is defined as: G(fin) := (s, fin) 2 (m- xra-1-
Thus, G(fin) is a vector containing all the half-space odd moments of f;,. The variational form in (1.10a)
and its initial condition follow trivially from the definition of a strong solution given in Theorem 1.2.
However, the derivation of boundary conditions (1.10b) is more involved and one can find details of this
derivation in [19, 21, 22]. For brevity, we refrain from discussing these details here.

The Galerkin formulation (1.10a) is L?-stable and its stability results from the specific form of
the boundary conditions given in (1.10b). Since stability will be crucial for developing error bounds,
we present a brief derivation of the stability estimate. We choose v as fis in (1.10a), consider (for
simplicity) fi, = 0, use the negative semi-definiteness of @ and perform integration-by-parts on the
space-time derivatives to find
(1.12)

L Far (D72 sy =1 (0|72 (o xmay < — 2 <Aﬁ/1(7f1\/1), A&M’M)Ai/[(’ny)>L2((o ) onE=)

= — 2(APPMNG (1 fan), RODAQMOS, (v ar) )

<0

L2((0,T)x 03R=S")
b)

where the last inequality is a result of R™) being s.p.d and all the boundary integrals are well-defined
because Ay (vfar) € L2(V; REM), which is a result of our definition of Hps given in (1.8). Moreover, the

M)

integral on the boundary involving AEI,M’ results from the following, which results from the orthogonality

of even and odd Hermite polynomials

/ & (vfar)?dg 22/ (v fa)? (v far) dg
Rd R4
(113) =2 [ (M0 WOVF) & (V5000 A rfan) V) de

=92 <A]O\4('7’fM)7AEI,M’M)A%('W?M»RE{)VI'

REMARK 2. The variational form in (1.10a) is the same that leads to the Grad’s moment equations
[14]. However, through (1.10a), we only recover the so-called full moment approximations [3, 26].

REMARK 3. Grad [14] prescribes boundary conditions through A, (yfam) = B,(I,M’M)Aﬁ/l (vfm)+G(fin)
but they lead to L?*-instabilities [19, 21]. To see the difference between Grad’s boundary conditions and
those which lead to stability (1.10b), we use the expression for RM) from (1.11) and subtract the boundary
matriz in (1.10b) with the Grad’s boundary matriz to find

(1.14) R(M)AEIIM,M) _ B\(IIM,M) _ (O, {R(M)Ang,M) _ beM,M)}) .

The above relation implies that the two boundary conditions differ only in terms of the highest order even
moments of far i.e. through XS, (fam(t,x,.)). This difference will show up in the convergence analysis
and will influence the convergence order of our moment approximation.

REMARK 4. In [10], authors consider an IBVP for the radiative transport equation and develop a
L2-stable moment approzimation for the same. Comparing our approach to that proposed in [10] is
ongoing research and we hope to cater to it in the future. The framework proposed in [10] considers a
bounded velocity domain, which does not have a radial direction. Therefore, the first step is to extend this
framework to an unbounded velocity domain, and then to compare it to ours.
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2. Convergence Analysis

We outline the forthcoming convergence analysis in the following steps.

(i) Define a Projection Operator: we define a projection operator Iy, : L2(R%:; HY(V))) — Hyy (with
H)s as defined in (1.8)) such that the trace of the projection satisfies the same type of boundary
conditions as those satisfied by the moment approximation (1.10b). Such a projection operator
helps us exploit the stability of the moment approximation (1.12) during error analysis.

(ii) Decompose the error: we decompose the moment approximation error into two parts

(2.1) Ev=f—fu=f-Tuf+Tuf— fu-
P enm

Above, ey is the error in moments (or the expansion coefficients) and Py is the projection error.
(iii) Bound for the projection error: we derive a bound for || Py/| z2(p) in terms of the moments of the
solution, and using our regularity assumption (see assumption 2) we show that ||Pps||z2(py— 0
as M — oo.
(iv) Bound for the error in moments: Using stability of our moment approximation (1.12), we bound
llear || L2 (py in terms of || LPas||12(py, where L is the projection operator. We complete the analysis
by showing that ||LPy| r2(py— 0 as M — oo.

2.1 The Projection Operator We sketch our formulation of the projection operator Il :
L2(R% HY(V)) — Hyy. Let r € L2(R% H'(V)). We represent the projection Iy generically through
Myr = (/A\j’w(r) WG, 4 A, (r) - \Ifﬁw(r)) Vfo where A3, and A§, are linear functionals defined over
L?(R%). For now assume that IIp; € Hj; and that the trace of the projection (i.e. yIIar) is such that
y(Tpr) = (/A\?w (yr) - WG, + AS, (yr) - ‘I’?w) Vfo. Once we define A3, and A%, it will be trivial that both

of these assumptions are satisfied. As mentioned earlier, we want ~(IIy;7) to satisfy moment approxima-
tion’s boundary conditions (1.10b). Since these boundary conditions have no restriction over the even mo-
ments, we choose A%, (r) to be the same as the even moments of r i.e. we choose A%, (r) = A%, (r). However,
coefficients of the odd basis functions are constrained by moment approximation’s boundary conditions
(1.10b) and thus we choose them as A9, (r) = R(M)ASI,M‘M)A?W(T) +G(r). Such a choice of Ag,(r) ensures
that, provided the inflow part of r coincides with fi,, we have A%, (yr) = R(M)ASI,M’M)A‘;‘V[(WT) +G(fin)
along the boundary, i.e. the projection satisfies the boundary conditions of the moment approximation
(1.10b). In the following, we summarise our projection operator and, for convenience, we also define the
orthogonal projection operator.

DEFINITION 2.1. We define Il : L2(R% HY(V)) — Hyy as
r() o (B§(r) - () + A5 () - 5, () VIo() with A3 (r) =RODAG NG, () + G(1).

Similarly, with Xy as given in (1.8), we define the orthogonal projection operator Iy = L2(D) — X
as

(Iarr)(€) = (AR (r) - W3, (€) + ASy (r) - U5,() V fo(€), r € L*(D).

REMARK 5. In (1.10a), we prescribe the initial conditions using the orthogonal projection operator,
but there is no unique way of doing so. Our convergence analysis covers all projection or interpolation
operators which introduce errors that decay at least as fast as the moment approzimation error (Epr).
Upcoming convergence analysis will clarify the fact that both Iy and Iy satisfy these criteria. Therefore,
for simplification, we prescribe the initial conditions through fa;(0) = Ilar f1, which ensures that eps(0) =
0. Note that implementing Iy is cumbersome and therefore for implementation, one might want to
prescribe initial conditions using s or some other (easier to implement) interpolation.

REMARK 6. Due to our definition of the projection operator f[M, the projection error Py (defined
in (2.1)) is not orthogonal to the approximation space Hyy. This is in contrast to the analysis in [12, 25]
where the use of an orthogonal projection operator leads to a Py that is orthogonal to the approzimation
space.
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2.2 Extension to spatial domains with C? boundaries: Velocity perpendicular
to our spatial domain’s boundary is £&; and we have defined the projection operator (f[ M) with respect
to this velocity, this is implicit in the definition of the operators G and AEI,M’M). Since for the half-
space (2 = R~ x R?!) the boundary normal is the same at every boundary point, the definition of the
projection operator remains the same for all boundary points. However, for a spatial domain other than
the half-space, the normal along the boundary varies which results in different boundary points having
different projection operators. We briefly discuss a methodology to construct the projection operators
for a C2-domain, which can have a normal that varies along the boundary.

Let Q € R? be a domain with a C? boundary. Then, for every point 2y € 9§ we can define a line
which passes through xy and points towards the interior of the domain in the direction opposite to the
normal at xg (n(zg)): Lu, = {x € Q: 2 — 29 = an(zg),a € R™}. Since the boundary is C?, there exists
some 0 > 0 such that Qs := {x € Q : dist(z,0Q) > §} has the property that no two lines L,, and L,
for any xo,z1 € 01, intersect within Q.

Inside 25 we use the orthogonal projection IIj; whereas outside of €25 we proceed as follows. For
every x € Qf (by definition of €5) there exists a unique z¢ such that z € L,,. Let ﬁf\} denote the
projection operator accounting for the boundary conditions at xy. Then at = we define the projection
operator to be the linear combination of the projection operator which satisfies the boundary conditions,
ﬂﬁ, and the orthogonal projection operator II,,

A r—T ~ r— X

In this way, « — I1%,(fa(., 2, .)) satisfies the desired boundary conditions and is C.

REMARK 7. We emphasize that the projection operator defined in Theorem 2.1 is an analytical tool
defined such that the projection satisfies the same boundary conditions as those satisfied by the moment
approximation. It is nowhere needed for computing the moment approximation. This is also clear from the
variational formulation given in (1.10a), where we set to zero the orthogonal projection of the evolution
equation onto the approximation space.

2.3 Main Result In the following, we summarise our main convergence result.
THEOREM 2.2. We can bound the error in the moment approximation, Eynr = f — fur, as
(22) IBa (T) | L2 sy < IF(T) = Tar f(T) | 2 (xray+T (A1 (T) + QI A2(T) + As(T))

where

A (T) = (G(M)H)\?w(atf)||CO([o,T];LZ(Q;Rne<M>))

(2.33) V2 ga} 5 (MHHd)kfu(atf) H

A(T) = (@<M>||Ai4<f>||co<[o,T];Lz(Q;R%(M)))

¥
CO([0, T L2 (Wt (R)))

(2.3b) +v2 Z

Bede, o}

d
T) = (M AL ™ 21IX5 (0r. Nl oo 2 2mmecn))

2(M +1) +d)’€BHf leoqo.ryza@mwy? @y | -

i=1
V(M + D[ Anr41(0z, )l oo, T]-Lz(Q]R"(MJrl))))
[
(23C) + ( (M+ 1) =+ d ke ZH 8x1f ”CO([O T] L2(Q w 'c(Rd)))’
M,M M,M
(2.3d) Ot =||[RAM AN _ B )Hg.
As M — oo, we have the convergence rate
C . e/o 1 e/o 1 e o 1

(24) ||EM(T)HL2(Q><R4)§ m, W:mln{k’ / _§7kt/ —2,k$_1,kw—2}

8
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2.4 Error Equation

The motivation behind decomposing the right hand side into the different A;’s is that each of these terms
vanishes in different physical settings. The term A; vanishes for steady state problems i.e. for 0;f = 0,
the term Ay vanishes in the absence of collisions, and the term As vanishes under spatial homogeneity
ie. for 0, f =0.

An alternative way to understand the right hand side of the error bound given in Theorem 2.2 is to

identify the following four different types of errors:

(i) Projection Error: This is the first term appearing on the right side of the error bound in (2.2)
and is the Py defined in (2.1).

(ii) Closure Error: This is the second term appearing in As(7) (2.3c) and involves the M + 1-th
order moment of J,,f. The term accounts for the influence of the flux of the M + 1-th order
moment which was dropped out during the moment approximation.

(iii) Boundary Stabilisation Error: These are all the terms involving ©(*) and are all the first terms
appearing in (2.3a)-(2.3c). These terms are a result of the difference between the boundary
conditions proposed by Grad [14] and those given in (1.10b) which lead to a stable moment
approximation; remark 3 explains the difference between the two boundary conditions. Since
the two boundary conditions only differ in the coefficients of the highest order even moment (see
(1.14)), this error depends only upon this highest order even moment.

(iv) Boundary Truncation Error: These are all the terms which are not included in the above defini-
tions. They are a result of ignoring contributions from all those even (and odd) moments which
have an order greater than M and do not appear in the boundary conditions for the moment
approximation (1.10b).

We prove Theorem 2.2 in the next few pages.

2.4 Error Equation To derive a bound for the moment approximation error
(i.e. for ||Ear(T)] 12(axrae)) we first derive a bound for the error in the expansion coefficients (i.e. for
llear(T) |2 (@ xray) and then use triangle’s inequality to arrive at a bound for || En (1) L2 (oxra); see (2.1)
for definition of Fy; and ey;. In the following discussion we suppress dependencies on x and &, for brevity.
We start with adding and subtracting l:(f[ mf) in the definition of a strong solution given in Theo-
rem 1.2. For all v € Xy, and for all ¢ € (0,T), considering the integral over Q x R provides

(v(®), £(MTasf (1)) = (o), L0 £ () = £(2) )

L2(QxRY) L2(QxRd)

= <U(t),HME(ﬂMf(t) - f(t)>> )

L2(Q2xR%)

where X); C L?(D) is as defined in (1.8). For the last equality we have used the trivial relation:
(W), w®)) p2(axray = V), Mpw(t)) p2oxray: ¥(v,w) € Xnr x L?(D). Subtracting the above relation
from our moment approximation (1.10a), and using the linearity of £, we find

(25)  {w(0) Ller ) ooy = (v VL @) =T f0)) |, V0 € Xar, Vi€ (0.7,

where ey is as given in (2.1). To derive a bound for e,;, we want to use the stability of our moment
approximation (1.12). We do so by choosing v(t) = eps(t) in the above expression and by performing
integration-by-parts on the spatial derivatives, which provides

(2:6)  {ear(t) Orear (1)) ey — (enr(2), Qens (1) ooy
< (om0 LGO =T f @) = § | aen(n)aeds.

>0

Later (in section 3) we present physically relevant examples where the non-dimensionalisation of the
kinetic equation results in the so-called Knudsen number, the inverse of which scales the collision operator.
Depending on whether or not we are interested in the low Knudsen number regime, we can proceed with
the above bound in different ways. Here we consider a Knudsen number that is large enough and postpone
the discussion of small Knudsen numbers to subsection 2.7. Since ) is negative semi-definite, using the
Cauchy-Schwartz inequality to the above bound provides

(2.7) (enr(t) Brenr (1) 2 (awray < lear (B)l] 2 (@uray [Tar £0f (£) = Mar £ (8)) ]| 2 (e
9
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The integral over the boundary is positive because the trace of the projection (i.e 'yf[M f) satisfies the
same boundary conditions as those satisfied by our moment approximation (1.10b). To see this more
clearly, consider the following relation which results from the even-odd decoupling (1.13) and the moment
equation’s boundary conditions

7! &1(venr(t))2déds = ;f (A% (vear (1)) AG" NS, (vear(1))ds,
o JRA o0

_ jé ) (Ass(renr (1)) (ALY ROD ARG, (yeny (8))ds = 0.

The last inequality is a result of R™) being s.p.d. Using the fact that (eM(t),ateM(t))LQ(Qde) =
llear ()Nl 2 (xrayOellear (t) || L2 (o xrey in (2.7), dividing throughout by [leas (t)[ L2(oxre) (result is trivial for
ey = 0) and integrating over time provides the following bound

T
lear(T)l| 22 (e < / ITar£CF(E) — Toar F(0) | comey dis

<T|TprL(f(t) — Tar f(0) | oo (po,79:02 (xR -

Above, our choice of the initial conditions (see remark 5 ) results in ey (0) = 0. To spell out the above
term on the right, we use the definition of £ from (1.1), the boundedness assumption on @ and triangle’s
inequality to find

T £ (8) = ar f () 2 ey IO f (1) = aref ()| L2 (xmey HIQUIF () = Tar f (D) 22 ey

i Ed:HHM (gi (azif(t) - ﬂMazif(t)>) 2 (@xra)-
i=1

(2.8)

(2.9)

We can further simplify ||ITns (fi (awf(t) - f[Mawf(t))> | L2(axray by adding and subtracting
& a0z, f(t). Then, triangle’s inequality provides
[TTar (Ez‘ (C%f(t) - ﬂMazif(t))) 2 (@xra) < (”HM (& (HMamif(t) - ﬂMamif(t))> 22 (xR
s (& (D, £(1) = Tas 0, f(1))) | 22 ) -
To simplify the first term on the right we use (page-80, [23])
(2.11)
100 (& (Tar0e, £(8) = T1as0, £8)) ) z2qacry < IAG o) (Tar e, £(8) = Tas0, £8)) 1112 -

Moreover, to simplify the second term on the right in (2.10) we use the orthogonality and the recursion
of Hermite polynomials to find

Mot (& (0, £(8) — Tase, O s =T (& O 0, 0 - 112) Vo) e
VM 4 D[ Apr41(0, f () | L2 (@srn a4

Substituting (2.10)-(2.12) into (2.9) and substituting the resulting expression into the bound for ey, we
find the following bound for || Er ()| L2 xre)

1B ()| 22 (axray <IF(T) = s (T 2 oxrey+llear (T) | 2 xra

(2.10)

(2.12)

(2.13) ) A i )
<NF(T) = ar f(T) || z2(axray+T (AL(T) + |QIIA2(T) + As(T))
with
A(T) = (|8 f — sy fll o o.17:12 (@ x Ra))
Ay(T) = |If = s flleo o7y 22 (xre))
d
(2.14) A3(T) := /(M +1) > Aar 410z, Fllcogo,r); 12 (@smna+17))
=1

d
1A N I MasBe, f — s a, £l cogo,17:22 (xma))-
=1
10



2.5 Projection Error

430 The above expression is a bound for the moment approximation error in terms of the closure error and
431 the projection error of different quantities. Rate of convergence for the closure error will trivially follow
432 from the velocity space regularity assumption made in assumption 2. Therefore, to complete our proof
133 of Theorem 2.2 we develop a bound for the norm of AEI,M’M) and a bound for the projection error. In
434 particular, Theorem 2.5 will show

135 (2.15) Ay(T) < Ay(T) fori=1,2,3,
436 where A;(T) are as defined in Theorem 2.2.

437 2.5 Projection Error The following result shows that we can express the odd moments of
438 any r € L%(R?) in terms of its even moments and the function G defined in (1.10b). The result will allow
139 us to quantify the projection error in terms of the odd and the even moments of degree higher than M
140 which were left out while defining the projection operator Iy

441 LEMMA 2.3. For every r € L*(R?), it holds

12 (216) (5VFor) L = 2BV For) e

L2(R+ xRd—1)

144 or equivalently A, (r) = limg oo B\(I,M’q)Ag(r) + G(r) where r° and r° are the odd and even parts of
445 1, with respect to &1, respectively, and G is as given in (1.10b). We interpret limg oo B\(I,M’q)Ag(r) as
446 limg_yeo (B\(I,M’q)Ag(r)) where B‘(I,M’q) is as giwen in Theorem 1.6 and the limit is well-defined for all
w7 re LA(RY).

448 Proof. See appendix-A. O

449 In the following result, we collect all the relevant bounds on different matrices and operators. We will
450 use these bounds to formulate the convergence rate of the projection error.

451 LEMMA 2.4.

452 (i) For lim,_, B\(I,M’q) it holds |limgy— o0 B\(I,M’q)HS 1 where limg_, B\(I,M’q) is as given in Theo-
153 rem 2.35. .

454 (ii) For A(M M) an dA(MM Vit holds: ||( (MM~ 1)> Apr’M)HgS CV'M and ||AEI,M’M)||2§ CvM.
455 Proof. See appendix-C. O

156 Using the above results, in the following we develop a convergence rate and an error bound for the
157 projection error.

458 LEMMA 2.5. Let r¢/° € C°([0,T]; L?(%; W}f“(Rd))) then we can bound Hf[Mr(t) — T(t)||i2med) as
150 IELarr(t) = 1(0) 22 gy (OO XS (e Wi
. B(t
460 +2 Z M +1 i d)zkﬁ H ( )||L2(Q Wkﬁ (R4))’
461 Bede, O}

162 where @M = ||R(M)A§JM’M) — BS,JM’M) ll2 and dependency on x and & is hidden for brevity. Similarly, we
463 can bound the difference between the orthogonal projection and the projection that satisfies the boundary
464 conditions as

3 e 1 e
165 [ (8) = Magr(8) By < (OCDVING () oy i1y e 17 s oy
467  As M — oo, we have the convergence rate
463 ITasr = 7l ooy r2(xran < CM ™2, [Marr — Myl cogo ;e (xray < CM~E =2,
470 whered):min{k"— %Jﬂe— % .
471 Proof. We express r in terms of tensorial Hermite polynomials and use Theorem 2.3 to find

M

472 = Z (A (1) - 050 (€) + A0 () - 95, (9)) Vo, with A3, (r) = lim BETVAL(r) +G(r),
4! =0 e

11
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where A, = (AS(r)’,..., A9, (r)") and AS, = (As(r), ..., X5, (r)'). Moreover, the definition of TTyr (see
Theorem 2.1) provides

M
Mar = 3 (A0 - W0 () + AL (1) - W, (€)) Vo, with A% () = R AGM NG, () + (1),
m=0
where A}’w = (A9(r),..., X3,(r)). Subtracting r from ITy;7, using limg_s o0 B(M Q)Ae Z B(M 9 Ag(r

and the simplified expression for R(M)ASI,M’M) — B\(I,M’M) from (1.14), we find

My — 7 = (ROD AP — BMYONG () 0@V — S (B9x0m) - 43,€)v/Fo

(2.17) - a=M+1
= 3 () W) + Ar) - w2(E)) Vo
q=M+1

where beM’M) is as defined in Theorem 1.6. The matrices B&M’q) and the operator lim,_, beM’q)

appearing above can be looked upon as restrictions of the operator limg_, B\(I,M’Q) given in Theorem 2.4;
thus all of their norms can be bounded by one. This provides
(2.18)

A 2
Tl (6) = (Ol gz < (0) I O oo 2 3 30 TN s

Be{e, o} qg=M+1

2
< (040 105 (r (D22 e )

2q+d)2kﬁ
+2 ) Z 7 IS N3 5 g s o
2(M (QR™8
Befeo} a= M+1 —|-1 +d) )

S CE N <v~<t>>||iz (e a0

2
+ 2B€{Z} (M +1 —I—d)sz ” ( )|‘L2(Q;W§B(Rd))7

where for the last inequality we use the definition
o0
IO 2wt mayy= D24 + D IAGT(0) 122 gnotor)-
q=0

Above relation proves the bound for ||f[ M7 — 7|2 xre). To prove the convergence rate we use the last

inequality in (2.18). The convergence rate of terms involving ||r¢/°(t) follows trivially,

2 @awgere @y
and to obtain a convergence rate for the term involving ©™) we use the definition of R to find

2 e M,M M,M .
(@(M)) H)\M(T)Héo([07T];L2(Q;Rna(M))):”R(M)A’Ep ) _ pr )||%||)\M(T)||é0([O7T];L2(Q;R"E(M)))

MM—1\ "1 (oM M, M ? .
. < (ALY AL Bl ) 182 () oy anecony

ST

The last inequality in the above relation follows from the matrix norm bound given in Theorem 2.4 and
12



2.6 Sharper Estimate

494 from the following estimate
(2.20)

oo

. oo 2m—i—d 2k® .
PO Esamon € S DGOz 3 (3575q)  PCO o

495 m=M m=M

1 2
=ar+ 7 MOy oy

496 In a similar way, we prove the bound and the convergence rate for ||IIp;r — ﬂMT||CO([07T];L2(QXRd).
497 Using the definition of II); and f[M from Theorem 2.1 we find

498 ﬁMerMr:((R(M)Apr’M) B(MM) 2 ( ) SN fo — Z (prM’Q)/\S(T))‘w&(E)\/%

499 q=M+1

500 which implies

. 2 e
501 10007 (t) = T ()3 oy < (O90) INGH () 2 s mmecany T Do INGE) o
502 q=M+1

503 Above inequality is the same as the first inequality in (2.18) but without any contribution from the odd

504 moments of degree higher than M. Therefore, we get the bound for [Tl — HMTH%Q(QXW) and its
505 corresponding convergence rate from (2.18) and (2.19) by removing contribution from the odd moments
506  of order higher than M. 0

507 Using the result from Theorem 2.5 in the upper bound for Ej; (2.13) proves the error bound given
508 in Theorem 2.2. To arrive at the convergence rate given in Theorem 2.2, first we split the bound for the
509  closure error in Theorem 2.2 as

(2.21) V( DIAar11 e, F)ll oo o, 1322 (mn 1407y < V(M + 1) (X341 (0 )l o (0,712 (Rm0 1))
HIX 1P, H)ll oo, 77:22 (rrme 411y ) 5

511 which results from acknowledging that Anr11(9z, f) = (ASy41 (0w, f) s ASr41(0z, f)'). The bound for the
512 individual moments of r € L%(Q; WE(R?)) in terms of ||7”HL2(Q wik(ray) (see (2.20)) implies that, with
513 respect to M, the closure error decays as O(min{k¢ — 2, k% — 1}). The convergence rate for all the other

5ok
514 terms in the error bound for Ej; follows from the fact that HASI,M M) o< CvV M and from the convergence

515 rate of the projection error.

516 2.6 Sharper Estimate As already noted in [12], a bound for the individual moments of
517 1€ L2 Wi (RY)) in terms of ||| 2ok (rey) Is pessimistic; see the relation in (2.20). Therefore, one
518 can make the error bound in Theorem 2.2 sharper by additionally assuming that the individual moments
519 decay at a certain rate. The following result provides such a sharpened error bound, which is useful during
20 numerical experiments because solutions to most numerical experiments have moments that decay at a
521 certain rate [12, 26].

522 THEOREM 2.6. In addition to assumption 2, assume that

C C
523 (2.22) 1N (D)l oo o 722 (mme ) < Y 1A @)l o o.17:220mm0 ) < ey

C .

524 (2.23) ||)\?n(aw,-f)HCO([O,T];L2(Q;R"B))< Bl Vie{l,...,d},
525 mre "2
526 where 8 € {e,o0}. Then, we can sharpen the convergence rate presented in Theorem 2.2 to
o . e/o e/o e/o 1
527 (2.24) Wshp = min ¢ k%%, k7 kY — = 5.
528 2
529 Proof. The result trivially follows from the above analysis by using the assumed moment decay rate
530 (2.22) instead of the pessimistic bound in (2.20). 0

531 REMARK 8. Note that the Hermite-Sobolev index in WE(R?), i.e. k, does not provide a decay rate
532 for individual moments. However, if moments decay at a certain rate, i.e., if [[Am(7)| L2(Qmnom)) <
533 then r € L2(Q; WE(RY) for k < s — % A detailed discussion can be found on page 12 of [12].

13
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548

2.7 Uniform in Knudsen-number estimate Here we are interested in the small Knud-
sen number regime and, in particular, we assume ||Q||> 0. For convenience we define the semi-norm

(2.25) [flo:= = (£, QU L2 (axra) »

which is well-defined because of assumption 1. We show that by treating the bound in (2.6) differently,
we get a bound for [leas(t)[| 2o xre) that scales with /[|Q||, which (for small Knudsen numbers) is better
than the scaling of ||@Q]| considered in Theorem 2.2. Moreover, we derive a uniform-in-Knudsen-number
bound for the part of the error that is orthogonal to the null-space of ). Precisely, for any function f the
semi-norm |f|q scales with Kn ™! by definition and we derive a linear-in-Kn~*-number bound for |e MlQ-
Recall that the Knudsen number results from the non-dimensionalisation of the kinetic equation and is
explicitly given below in (3.2).
From (2.6) we can infer

d _ _ 1
(2.26) %”eM(t)||2L2(Q><Rd)+|eM(t)|2Q < (A + A?)(lt))H@M(t)\|L2<aned)+|\(*Q)é [A2(t)lenr ()|
with
Ay (t) == |[Tpr8, f(t) — ﬁMatf(t)HLz(Qde)a
Ap(t) = || £(t) = Tar f ()| L2 mays
A3(t) = ZHHM(&(%f(t) — M0, F (1))l 2 02xme)

where we have used that @ is self-adjoint and negative semi-definite, so that —@Q admits a square root.
The discussion in equations (2.9) - (2.12) and Theorem 2.5 shows that for all ¢ € [0,7] and ¢ € {1, 2,3},
we have

(2.27) A;(t) < A(T) < Ay(T),

such that we infer that

d 1 1
(2.28) ||6M(t)||iz(gxmd)+§|€M(t)|?g§ (AL(T) + [1QII2 A2(T) + As(D))llear ()] 12 xmay + | QA2 (T)?

< \/ 2 (D) + QB A2(T) + Aa(T) 2 ers () gy QAT ).

Thus, for all ¢ € [0, 17, ||eM(t)||2L2(Qde) is bounded by z(t) where z solves

(2.20) 9= \/ 2 (A1) + 1QIE Ax(T) + Aa(T)25(0) + QIR A (T )

with z(0) = ||eM(0)||%2(QX]Rd): 0. The solution z satisfies

(2.30) \/(A1(T) QU2 A2(T) + As(1)?2(8) + Q|2 Ao(T)

- %(Alm L 1QIE Ao(T) + As(T))t + QI As(T)>.

The above relation provides

(231) (A1(T) + QU2 As(T) + Ag(T))?5(t)
< (AU(T) + QU2 As(T) + As(T))*2 + Q|2 Ax(T)",

which results in

(2.32) tes[l(l)%]l|€M(t)||2L2(Qde)§ 2(T) < (Au(D) + QI A(T) + As(T)T” + [ Ql| Ax(T).

14



2.8 Discussion

572 and

573 (233) sup HeM(t)||L2(Q><Rd)§ \/Z(T) < (Al(T) + ||Q||%A2(T) + Aj(T))T + ||Q||%A2(T) = B(T)

te[0,T)

It is worthwhile to note that the decay of B(T") with respect to M is the same as the decay of the bound
derived in Theorem 2.2. Moreover, both the above bound and the bound in Theorem 2.2 are linear in
576 time. However, while the bound in Theorem 2.2 scaled (for small Knudsen numbers) with ||Q||, the bound

1
77 in (2.33) scales with ||@||2. In order to obtain a uniform-in-Knudsen bound for |es(t)|g, we return to
78 (2.26) and integrate on [0, 7. This leads to

THEOREM 2.7.

T T
/0 §|€M(t)|ggdt S/o ((AL(T) + As(T))llear (t)]| 22 (xray QI A2(T)?) dt,

<T- ((AL(T) + A3(T))B(T) + | Q|| A2(T)?)

579 (2.34)

580  where ||q s as defined in (2.25), A1, A2 and As are as defined in (2.3a)-(2.3c), and B is as defined in
581 (2.33).

582 We note the following for the above result:

583 1. the right hand side in (2.34) is a bound for the square of the error and it decays with twice the
584 rate of the right hand side in Theorem 2.2;

585 2. both sides of (2.34) scale with ||@||, i.e., it provides a uniform-in-Knudsen-number bound. It
586 must be noted that |eas(t)|g is a semi-norm and it does not quantify the part of e, (t) that is in
587 the null-space of Q.

588 2.8 Discussion

589 Improved Boundary Conditions: Model for the matrix R(™) (see (1.11)) is not unique and can

590 be altered to enhance the accuracy of a moment approximation. For example, in [19] authors did such
591 alteration for the R-13 moment equations using a data-driven approach. However, due to the absence
502 of an error bound they did not analyse the correlation between the matrix R and the R-13 moment
593 approximation error.

594 With the error bound of the projection error, we develop some insight into the extent to which the
505 matrix R™) influences the convergence rate of a moment approximation. Consider the bound for the
596  projection error given in Theorem 2.5. We decompose this bound into two parts:

_ 1 .
o > (2(M + 1) + d)2+* ”TB”;(Q;W;?B (ray) 20 do0n) = (OMING (MIIZ2 eneran
598 Be{e,o0}

509  where 7% € LQ(Q;W}f (R?)) for B € {e,o}, and for simplicity we consider k¢ = k° = k. Clearly, a is
600 independent of R™) whereas agm is dependent upon OM) which then depends upon RM).

601 Trivially, @ is O(M~*) whereas, since M) is O(VM), dgmn is O(M~*=2)). Thus if one can
602 improve the model for R™) such that @) decays faster than O(yv/M) then one can obtain a moment
603 approximation which converges faster than the one presented here. Development of such a R is beyond
604 our present scope and will be discussed in detail elsewhere.

605 Sub-optimality: The convergence analysis presented in this paper is sub-optimal. What we mean
606 by optimality is twofold. Firstly, optimality means that the difference between the numerical and the
607 exact solution decays with the same rate as the best approximation error of the exact solution. Secondly,
608 optimality would require that no additional conditions are imposed on the exact solution. For the case at
609 hand, the rate of convergence of the best approximation error is the Hermite-Sobolev index. Our analysis
610 requires additional assumptions in the sense that not only the solution but also its derivatives need to
611 have some Hermite-Sobolev regularity. This is a common feature of the analysis of numerical schemes
612 for hyperbolic problems, see e.g. [6, 8, 10].

613 Recalling the convergence rate presented in Theorem 2.2, we find

1 1 1 1 1
614 (2.35 —mind k¥ — = kO Z pe_Z _Z po_ =
();]5 ( ) w mln{ 2a t 27 T D) 2) x 2}’
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3 EXAMPLES: LINEARISED BOLTZMANN AND BGK EQUATIONS
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where w is sub-optimal with respect to the different Hermite-Sobolev indices i.e., with respect to the
different values of k. We elaborate on this particular sub-optimality and show (through an example) that
it results from the velocity domain in the kinetic equation being unbounded (1.3). Loss of half an order
in all indices is a result of the boundary stabilisation error (©,s), which grows with v/M. This error
gets multiplied by ||AEI,M’M)||2, which grows with /M, and results in a sub-optimality of an extra half
appearing in the contribution from spatial derivatives; see the terms involving Ag in Theorem 2.2.
Growth in HASI,M’M)HQ, which also causes the growth in ©yy, is a result of the recursion relation of
Hermite polynomials (1.5b) which states that the product of £ with a M-th order Hermite polynomial
equals a linear combination of a (M — 1)-th and a (M + 1)-th order Hermite polynomial but with factors
which grow with /M. This growth results in the coefficients of AEI,M’M) growing as O(v/M), which

leads to a growth in the norm of AEI,M’M). See appendix-B and appendix-C for details of the structure of

AEI,M’M) and Oy, respectively. The use of Hermite polynomials as basis functions (and thus the growth in

HAEI,M’M) |l2) is related to the velocity domain of the kinetic equation (1.3) being unbounded. For kinetic
equations with a bounded velocity space, it might be possible to have basis functions such that HASI,M’M) Il2
does not grow with M, which would remove the additional sub-optimality in the Hermite-Sobolev indices
of the spatial derivatives. As an example, consider the radiation transport equation for which the velocity
space is a unit sphere and is thus bounded. A moment approximation can, therefore, be developed with
the help of spherical harmonics and contrary to Hermite polynomials, the recursion relation of spherical
harmonics is such that ||A£I,M’M)H2—> 1as M — oo [2, 10, 12]. Figure 1 shows a comparison between the

norm of AEI,M’M) for a S? and a R? velocity domain. Clearly, as M is increased, for a S? velocity space

HAEI,M’M) |l approaches its limiting value of one whereas for a R? velocity space ||AEI,M’M)H2 grows with
O(v'M). Thus for radiation transport, owing to the boundedness of HAEI,M’M) |2 with M, we expect that
one can entirely remove the second type of sub-optimality present in w, i.e., one can get a convergence
rate which is the same as the Hermite-Sobolev indices. Such a result would be in agreement with the
error estimates presented in [10, 12].

12F ]
1.00
10
8 0.98
6 0.96
—@~ Growth in norm
—=— Reference (slope=0.5)
4 0.94
0.92
* * * 0.90 ‘
5 10 20 5 10 20
M M

FIGURE 1. growth in ||AEI,M’M>||2 with M for: (i) left, R® velocity space and (ii) right, S? velocity space.

3. Examples: Linearised Boltzmann and BGK equations

We give examples of kinetic equations which fall into the framework presented above. In particular,
we discuss the conditions under which the linearised Boltzmann and the linearised BGK equation fall
into our framework.

With f : D — RY, (t,2,€) — f(t,z,€), we denote the phase density function of a gas and we
normalise f such that the density (p), the mean flow velocity (v), and the temperature in energy units
(0) of the gas are given as: p = [pq fd€, pv = [pa EFdE, pU -0+ dpf = [p4 & - €fdE. For convenience, we
non-dimensionalise all quantities with some reference density pg, temperature 6y and length scale L. The
evolution of f is governed by the non-linear kinetic equation given as [24]

(3.1) (1.6) Vi f = QU ).

16



669

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

689

690
691

where Kn is the so-called Knudsen number which results from non-dimensionalisation, and Q is a non-
linear collision operator. We consider ) to be either the Boltzmann or the BGK collision operator given
as

-/ s en (FE V() — 1) o(E)) dnde

BGK Operator: Qpcx(f, f) = (fam — ).

Boltzmann Operator: Qpg(f,

Above, the velocities f; and §l are post-collisional and result from the pre-collisional velocities £, and
¢. The collision kernel (B) depends on the interaction potential between the gas molecules and is non-
negative by physical assumptions. Moreover, fig is a Maxwell-Boltzmann distribution function given
as

Pt (€:5,5,0) = —L (-7 (-7)

= exp | — =

Vord 20

~ For low Mach number flows, we assume f to be a small perturbation of a ground state fy =
Fm(&p0,0,600), ie. f = fo+ e/ fof, where € is some smallness parameter. Substituting the lineari-

sation into the non-linear kinetic equation (3.1) and considering only O(e) terms, we find the evolution
equation for f

1
2 1 . = —
(3 ) ( af) V(15,:E)f KnQ(f)a
where @ is the linearisation of Qpg /BcK about fo and is given as
Linearised Boltzmann Operator: Qpg(f) = / B(& — &, 6)V o) fo(€)
Rd Jsd—1

(f(f’) (I (S I(3 > drdt.

V@) VhE) VhE Vh©

Linearised BGK Operator: Qpak(f) = (fm — f).

Above, fay/fo is a linearisation of fyq about fy and is given as
0
(3.3 ol 0.0) 1= (pt 064 5 €6 -3)) VAE.

where p, v and 6 are deviations of p, v and 6 from their respective ground states.

We discuss whether the collision operators Qpg/pck satisfy assumption 1. One can show that both
@QBE/BCK are negative semi-definite and self-adjoint, and that @pgx is bounded on L2(R9); see [4] for
details. Thus Qpak satisfies assumption 1. Below in remark 9 we summarise the assumptions that make
@BE a bounded operator, which results in pg satisfying assumption 1.

As compared to the general kinetic equation (1.3), our example of the linearised Boltzmann (or the
BGK) equation (3.2) has an additional factor of 1/Kn, which scales the collision operator. From the
bound on [lenr(t)]| 2(axre) (in (2.33)) we find that such a scaling introduces a factor of 1/v/Kn in front

of the term HQH%AQ (T') appearing in the error bound. An asymptotic analysis in terms of the Knudsen
number can tell us how the error bound (or equivalently A5(T)) behaves as the Knudsen number is
chosen smaller and smaller. Authors in [16] conduct such an analysis for initial value problems. For
initial boundary value problems, an asymptotic analysis is available only for the simplified Broadwell
equation [17]. We hope to cover the asymptotic study of the error bound in our future work. Although
the bound on [[enr| 2o xre) is sub-optimal in Kn, the bound on [eps[q (given in (2.34)) is uniform in Kn.
However, the semi-norm |eas|g only quantifies the part of the error that is orthogonal to the null-space
of @, and it is unclear how to get a uniform in Kn bound for the error in the null-space of Q.

REMARK 9. Assume that we can split Qg as

(3.0 Qun(1)(€) = QO —v(©(©). v(©) = [ [ Ble—&em)RlEIdnde..
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4 NUMERICAL RESULTS

692
693
694
695

696

697
698
699
700
701

702

703

706
707
708
709
710

[SCRE,
—_

- =
NN
w N

N
[\
=

~N 1 4
W N NN NN
S S ®» 3 S G

where v(§) > 0 is the collision frequency and Q is the remaining integral operator. The explicit form of Q
can be found in [7]. We can bound Q on L*(R?) by bounding Q and v(€) on L*(R%) and R*, respectively.

We discuss assumptions that allow for the above splitting of Q, and for a bound on Q and v(€).
Details related to our assumptions can be found in [4, 7, 15]. Assuming an inverse power law potential,
we express B(§ — &4, k) as

6*5*
‘§_§*|

Assuming Grad’s angular cut-off results in 0 +— b(cos0) € L'([0,7]). This makes v(§) well-defined and
allows us to split Q as above (3.4). The operator Q is bounded on L*(R?) for~ € (—3,1]. Moreover, |v(£)|
is bounded for all v € (—3,0]. Therefore, Qpg is bounded on L*(RY) for inverse power law potentials
with an angular cut-off and v € (—=3,0].

B(f - E*a‘%) = \Ij(|£ —5*‘)6((3089), \I/(|§ _€*|) = |§ - §*|’y’ v E (_37 1]7 cost =

K.

4. Numerical Results

Through numerical experiments, we validate the convergence rates presented in the earlier sections
by comparing the observed convergence rate with the predicted one. The solution to our numerical
experiment has moments that decay at a certain rate and hence we use the sharper estimate presented
in Theorem 2.6. With fiet we denote the reference solution and we set fief = far.., With Mies being
sufficiently large. To compute the observed convergence rate, which we denote by wyps, we first compute
the moment approximation error through En(T) = fret(T) — fas(T). Then, we compute weps as the slope
of the linear curve that minimises the L? distance to the curve (log(M),log(| Eas(T)|| r2oxre)))- The

predicted convergence rate, which we denote by wpye, follows from Theorem 2.6 and is given as
1
Wpre = Min {ke/o,kf/o,ki/o - 2} .

To compute the different values of k we first define the L? norms of the moments of f.e¢ and its derivatives

(41) NED = | A (0, Fret) oo (fo.13:12 :rnmr s NS = | A (81 feet) | 0o ((0,77:12 (R (m) )

N = [[Am (fret) oo (o, 73;12 (mn ) ) -

Let s° represent the slope of the linear curve that has the minimum L? distance to the curve
(log(m),log(Np,)) with N2, being the same as N, but with a dependency on only the odd moments.
We approximate k°, and similarly the other ks, by k° & s — 1/2. Once values of k are known we can
compute wpre using the above expression. To quantify the discrepancy between the observed and the
predicted convergence rates, we define

Aw = Wobs — Wpre-

For simplicity, we stick to a one dimensional physical and velocity space i.e., d =1 and Q = (0, 1).
To discretize the 1D physical space we use a discontinuous galerkin (DG) discretization with first-order
polynomials and 500 elements. For temporal discretization, we use a fourth-order explicit Runge-Kutta
scheme. Our DG scheme is based upon a weak boundary implementation that preserves the stability
of the moment approximation (1.12) on a spatially discrete level; see [27] for details. Note that in
Theorem 2.2 we assumed €2 to be the half-plane but we can extend the analysis to Q = (0,1) through
the following argument. The projection operator (f[ m in Theorem 2.1) is defined with respect to the
boundary conditions at x = 1 and a similar projection operator can also be constructed for the boundary
conditions at x = 0. By taking a linear combination of the projection operation defined with respect
to boundary conditions at = 0 and « = 1, analogous results as those presented in Theorem 2.2 (and
Theorem 2.6) can be obtained for Q = (0, 1).

x 2 . .
As initial data we consider fr(z,€&) = p’—\/(ﬂ) exp (—%) with pr(z) := exp [— (z —0.5)% x 100] which

corresponds to a Gaussian density profile with all the higher order moments being zero. As boundary
data we consider vacuum at both the ends (zr = 0 and © = 1) i.e., fi, = 0. As final time we consider
T = 0.3, and we choose M,.; = 200.

Figure 2 shows the decay in the L? norm of the moments defined in (4.1), and the corresponding
Hermite-Sobolev indices are given in Table 1. The moments of the solution and its derivatives have a
Hermite-Sobolev index that is close to 1.5, which signifies that the reference solution is sufficiently regular
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along the velocity space. As expected, the moment approximation error decreases as the value of M is
increased; see Figure 3. However, contrary to the previous results [26], the convergence behaviour of the
approximation error does not show any oscillations.

Table 2 shows the observed and the predicted convergence rate. The observed approximation error
converges with an order of 1.16 and is under-predicted by a value of 0.19. For the sake of validation,
we also compute the convergence rates with the reference solution obtained through a discrete velocity
method (DVM); see [18] for details of a DVM. With DVM as the reference, we obtain wpre = 0.98,
wobs = 1.15 and A, = wobs — Wpre = 0.17 which is very similar to the results obtained with a moment
reference solution Table 2.

Quantity | Hermite-Sobolev index (= Decay Rate-0.5)
Np, 1.8 (= k¢ = k°)
ND 1.45 (= k¢ = k?)
N 1.47 (= kS = k9)
TABLE 1

Hermite-Sobolev indices corresponding to the time integrated magnitude of moments defined in (4.1).

Values of M | wpre | Wobs | Aw = Wobs — Wpre
Odd 0.97 | 1.16 0.19
Even 0.97 | 1.16 0.19
TABLE 2

Observed and predicted convergence rates.

REMARK 10. Authors in [12] observed that moment decay rates computed using frer might show some
artefacts for higher-order moments. To remove these artefacts we follow the methodology proposed in [12],
i.e., we compute decay rates from only those values of Np,’s whose values computed through M.y and
M,c¢ — 1 differ by less than 3 percent.

5. Conclusion

Using a Galerkin type approach, under certain regularity assumptions on the solution, the global
convergence of Grad’s Hermite approximation to a linear kinetic equation was proved. The speed of
convergence was quantified by proving convergence rate which, as was expected, depends on the velocity
space Sobolev regularity of the solution. The proposed convergence rate was found to be sub-optimal, in
the sense that it is one order lower than the convergence rate of the best-approximation in the Galerkin
spaces under consideration. Growth in the norm of the Jacobian corresponding to the flux of moment
equations was found to be the reason for this sub-optimality. For validation of the proven convergence
rate, a numerical experiment involving the linearised BGK-equation was conducted. For a moderately
high Knudsen number (Kn = 0.1), the observed convergence rate matched with the predicted convergence
rate with acceptable accuracy.
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Appendices

A. Proof of Lemma 2.1

By splitting the integral over &, we find <\I/§’w\/%,r>L2(Rd) = <\II%J\/]T0’T>L2(R+><]R‘1*1) + 3G(r).

Expressing r as r = r® + r° and using <\I/?w\/f0,re> = 0 in the previous expression, we find the

L2(R4)
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FIGURE 2. Plots depict the decay of the various quantities, defined in (4.1), obtained through a refined moment
approzimation (M = 200). All plots are on a log-log scale.
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FIGURE 3. Decay of the approximation error, on a log-log scale, for different values of M.

desired result. To derive an expression equivalent to (2.16), we express ° and r® as r® =3 | X2 (r) -

Vm

fo(§) and 1€ = 3770 o AT (r) - ¢y,

A (r) = limgy o0 BGTVAL(R) + G (r).
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We consider limg_, o B‘(I,M’q) to be an operator defined over [? in the sense of

: (Ms@)y . . (7 (M,q) 2
(qlggo By " )x = (qlggo By Vx), Va el
We now show that limg_,o B\(I,M’Q) is well defined on 2 which is equivalent to showing that the limit
limg B\(I,M’Q):U is well defined. Let 2 € I2 and let 29 € R? be a vector containing the first ¢ elements
of x. To extend z? by zeros, we additionally define z9 € I? which has the same first ¢ elements as x
and whose all the other elements are zero. From the definition of B\(I,M’q) (i.e. Theorem 1.6) we find
B\(I,M’q)xq =2 <\P?\4\/f07gq>L2(lR+><Rd*1) where g? = (V¢ - )/ fo. Trivially, £ converges to x in /2. This
implies that g¢ converges in L?(R?). Then, by the continuity of the inner product of L?(R* x R4~1), we
have the convergence of B\(I,M’q)xq in R=o"

B. Structure of AEI,M’M)

We discuss in detail the structure of ASI,M’M) which will be needed for the proof of Theorem 2.4. From
the definition of A‘(I,M’M) it is clear that it contains blocks of the integral

DD — <¢§é(€)v anélq/}le(f)/Vf0> 2(R4) and DM+ — ( where the second relation is a result of
L2(R

only considering basis functions upto degree M in our moment approximation (1.10a). Recursion of the

Hermite polynomials (1.5b) provides ¢2(£)& = d™F=Dye_ (&) + dFF D¢ | where 9f, | is vector

containing the first n,(k) components of ¢} ;. Moreover, matrices dRk=1) qlkkt1) g Rro(k)xno(k)

are diagonal matrices containing the square root entries appearing in the recursion relation. Using

orthogonality of basis functions, we express D*:!) as

) foa 2 (O (€) fodg = d®D, L=k=1
(B.1) DD — ) qlkk+1) fRd 1/32+1 (¢;§+1(§))Ifod§ = ( dkk+D) ) , l=k+1
0, else

Note that D**=1) ¢ RroB)x(ne(k=1) " where ny(k — 1) = n,(k), whereas DF*+1) ¢ Rro(k)xne(k+1),
Since, ne(k) = no(k + 1), AQ"™) consists of blocks of D*#-1 on its main diagonal and blocks of
DER+1) on its off diagonal with no entries below the main diagonal. From the recursion of Hermite
polynomials (1.5b), we conclude

(B:2) dift ) = () dEY = (1) 41 e {Lmo(k)),

where Bkl’o) is as defined below

DEFINITION B.1. Let 8} € R (K)Xd be such that each row of By contains the multi-index of the odd
basis functions contained in ¥7(§). Moreover, let 51(61’0) e R %) represent the first column of By

Note that all the entries in B,(Cl’o) are odd. Therefore, all the entries along the diagonal of d(*:k+1)
and d®*=1) are square roots of even and odd numbers respectively. It can be shown that the number of

times one appears in B,(Cl’o) is equal to k + 2. Thus, d**~1) has the structure

N CC
(B3) d(hk U= ( 0 [k+2

where dFF=1) ¢ R0 (k)= (k+2))x (no (k) =(k+2)) and [*+2 is an identity matrix of size (k+2) x (k+2). From
(B.1), (B.2) and (B.3) we can conclude that

dkk=1)

(B.4) DR — ( 0 gk

) \ pUek+1) ( d(k,kJrl)’ 0 )

The matrix ASI,M’Mfl), which can be constructed by ignoring the contribution from D®M—1.M) into
AEI,M’M), is upper triangular with blocks of D®** =1 along its diagonal. Since D**=1) contains square
roots of odd numbers along its diagonal, which are all non-zero, the invertibility of ASI,M’M_D follows.
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C. Norms of Matrices and Operators

We will need the result

LEMMA C.1. Let A € R™™, n > 1, be given by A;; = /21 — 1d;; + \/Z(S(H_l)j. Then the solution
z € R™ to the linear system

(C.1)

Aijzj = bin

is such that ||x||;2= 1.

Proof. For n = 1, the result is trivial and so we consider the n > 1 case. From the first n — 1
equations of the linear system (C.1) it follows ;v/2i — 1 4+ 2441V/2i = 0,4 € {1,2,...n — 1}, with which
we can express any x, (p > 2) in terms of z1 as

(C.2)

Thus

(C.3)

le 2k—1 (—1)p mxl’ p€{2,...n}.

2 _ 2 " 2
bt (143 @) S o

p:2

From the last equation in (C.1) and using (C.2) we have x,, = 1/v/2n — 1 which implies

] = )"~1y/(2n — 2)!'1 /(2n — 1)!'1. Using the expression for z1 in (C.3), we find
) ” n—1
[z]l2= H Z 2;Dp|
Finally, induction provides 22;01 1/(2Pp!) = (2n — 1)1 /(2n — 2)!! which implies ||z||%= 1. 0

(1)

(i)

(iii)

Norm of limy 0o B0 Let L = limy_,o0 B which is well-defined on {2 due to Theo-

rem 2.3. Define y € RZ asy = La = 2(UG, fo,7) e where 7 = 300 @y - V5 fo, @
’ ’ 4

(xmml, .. ,x;c, . ) and z € R"®) Functions \/ﬁwffo are orthonormal under (.,.) ;. This

implies |[r||%.= %|lz[|%. Orthogonal projection of r onto {v2¢2, fo}m<ar can be given as
/

Pr = Z%Zl Ym - Yo, fo where y = (yll, y;, . ,y&) and y, € R™®)  Therefore, it holds
[Prils+< |Irllx+. Since [|Pr{.= llyl/2 and |||+ = [lz[]7/2, we obtain [[y[[%< [lz[{ which
provides || L]|< 1.

Norm of A(M M) Let A= A (M, M) (A(M M) ) Since every row of A( M) contains two entries,
one on the main diagonal and one on the off diagonal (see appendix-B), every row of A will contain

a maximum of three entries. Since the maximum magnitude of entries in ASI,M’M) is O(V M), the
maximum magnitude of the entries, in A, will be O(M). The Gerschgorin’s circle theorem then

implies that the maximum eigenvalue of A will be O(M) which implies ||AEI,M’M) o< CVM.

Norm of || (A&,M’M_l))_l AT(,Z,]\/LM)HQ : In the coming discussion we will assume M to be even;
for M being odd, the proof follows along similar lines and will not be discussed for brevity.
From the definition of A(M M) it is clear that it only has a contribution from DM-LM) ¢
R7o(M=1)xne (M) = yith D(M LM) as defined in (B.4). Let X € RZ *ne(M=1) represent those

—1

columns of (A‘(I,M’M_l)) which get multiplied with DM =1LM) appearing in A;M’M). As a
—1

result H(ASI,M’M_”) AP |ly= | X D=1 ||, < X ||| DM 1M 5. From (B.2) it follows

that ||[DM~1M)||,< Cv/M. We show that X is unitary which proves our claim.

Let 2(“) denote the w-th column of X with w € {1,...,n,(M — 1)}. We decompose z(*) as

! ! /
(@) = ((1‘5:)(0)> , (xg:)(l)) yenes (x;“:)(M_l)) ) where xfz)(q) € R™<(@), Different values of z(*),
22
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847 for different values of w, can be found by solving the system of equations (which results from
-1
848 AEI,M’Mfl) (A;M’Mfl)) =1)
849 (C.4) D(k7k_1)x£:)(k71) + D(’“’k“)m;‘:)(kﬂ) =0 D(M’M_l):cife)(Mil) =0,
850 (C.5) D(M**M*Q)xf:)(M_Q) = [ro(M-1)
852 where ISO(M_I) is a diagonal matrix of size n,(M — 1) x n,(M — 1) such that (Lﬁ"(M_l)> =0
853 and D**=1) (and D**+1) are as defined in (B.4). From (C.4) we conclude x;i)(Mfl) = 0 which
854 implies xf::)(Mf(zqfl)) =0,vqe{l,... %} We express the set of remaining equations as
kk—1),.(w) kk+1) . (w —
- o Dk g+ DEE g =0, Vke{1,3,...,M -3}
o0 ‘ M—1,M—-2) ()  rng(M—1
D¢ )xne(M72) =I" ( )
856 Orthogonality of solutions to (C.6) is clear from the structure of the linear system itself. There-
857 fore, to prove our claim we need to show that
858 (C.7) |z |p=1Vwe {1,...no(M —1)},
860 for which we will claim that solving (C.6) for a given w is equivalent to solving a system of
861 the type (C.1); the result will then follow from Theorem C.1. From the entries of d**~1) and
862 d®F+1) defined in (B.2), it follows that the system in (C.6) is equivalent to
(C.8)
1 v2 0 0 (x(w ) 0
0 V3 V4 0 (?e(M‘Q‘”j 0
(s 0
863 o o - 0 c(M=2(q=1)) ) ; | _ 0
000 0 . B -2 B, -1 ,
(L.0) (x(w) ) :
864 0 O 0 e e (ﬁMfl)J nE(M72) j 5j7w
- where ﬁkLo) is as defined in Theorem B.1, ¢ = ((ﬁ;}f)l) + 1) /2 and for every w,
J
866 je{l,...,no(M —1)}. For j = w, the system in (C.8) is the same as (C.1) and hence (C.7)
867 follows.
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