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Abstract. In (Commun Pure Appl Math 2(4):331-407, 1949), Grad proposed a Hermite series expansion for approxi-4
mating solutions to kinetic equations that have an unbounded velocity space. However, for initial boundary value problems,5
poorly imposed boundary conditions lead to instabilities in Grad’s Hermite expansion, which could result in non-converging6
solutions. For linear kinetic equations, a method for posing stable boundary conditions was recently proposed for (formally)7
arbitrary order Hermite approximations. In the present work, we study L2-convergence of these stable Hermite approxi-8
mations, and prove explicit convergence rates under suitable regularity assumptions on the exact solution. We confirm the9
presented convergence rates through numerical experiments involving the linearised-BGK equation of rarefied gas dynamics.10

Introduction11

Evolution of charged or neutral particles (under certain conditions of interaction) can be modelled12
by linear kinetic equations. The explicit form of these kinetic equations depends on the physical system13
they model and many of these forms have been extensively studied in the past; see [11, 12, 14, 28].14
Broadly speaking, different forms of kinetic equations have mainly three differentiating factors: the space15
of possible velocities of particles, i.e., the so-called velocity space; the external or the internal forces that16
act on the particles; and the collision operator that models the interaction between different particles. In17
the present work, we are concerned with linear kinetic equations that have the whole Rd (1 ≤ d ≤ 3) as18
their velocity space, have no external force acting on the particles and have a collision operator that is19
bounded and negative semi-definite on L2(Rd). Such kinetic equations usually arise from the kinetic gas20
theory after the linearisation of the non-linear Boltzmann or the BGK equation [4].21

Mostly, an exact solution to a kinetic equation is not known and one seeks an approximation through a22
temporal, spatial and velocity space discretization. In the present work, we analyse a Galerkin-type veloc-23
ity space approximation where we approximate the solution’s velocity dependence in a finite-dimensional24
space [13, 20]. Our finite-dimensional space is the span of a finite number of Grad’s tensorial Hermite25
polynomials, which results in the so-called Grad’s moment approximation [14]. We consider initial bound-26
ary value problems (IBVPs), and equip the Hermite approximation with boundary conditions that lead27
to its L2-stability [21].28

The convergence behaviour of moment approximations, particularly for IBVPs, is not very well-29
understood. Lack of understanding originates from expecting a monotonic (and test case-independent)30
decrease in the error as the number of moments are increased but such a decrease is usually not observed31
in practise [26]. It is known that convergence of Galerkin methods is solution’s regularity dependent,32
which is in-turn test case dependent. Therefore, one possible way to understand the test-case dependent33
convergence of moment approximations is to reformulate them as Galerkin methods [9, 10, 23]. We use34
such a reformulation for the Grad’s moment approximation to prove that it convergences (in the L2-sense)35
to the kinetic equation’s solution.36

Reformulation of a moment approximation as a Galerkin method allows us to use the following37
(standard) steps for convergence analysis. Firstly, we define a projection onto the Hermite approximation38
space and use it to split the approximation error into two parts: (i) one part containing the error in the39
expansion coefficients (or the moments), and (ii) the other part containing the projection error. Secondly,40
we bound the error in the expansion coefficients in terms of the projection error. To develop this bound, we41
exploit the L2-stability property of the Hermite approximation, which is possible by defining the projection42
such that it satisfies the same boundary conditions as those satisfied by the moment approximation. We43
complete our analysis by proving that the projection error converges to zero.44

It is worth noting that the orthogonal projection onto the approximation space does not satisfy the45
same boundary condition as the numerical solution and, thus, the L2-stability results are not available.46
Indeed, from a technical perspective, defining a suitable projection operator is a key contribution of this47
work.48

In previous works [20, 23], for kinetic equations with an unbounded velocity space, authors have49
analysed convergence of Galerkin methods that use a grid in the velocity space. Although easier to50
implement, such methods fail to preserve the Galilean and the rotational invariance of kinetic equations.51
In contrast, Grad’s tensorial Hermite polynomials cannot be mapped to a velocity space grid but they52
do preserve especially rotational invariance of kinetic equations. This allows for an approximation that53
is physically more sound. To the best of our knowledge, present work is the first step towards analysing54
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1 LINEAR KINETIC EQUATION

the convergence of a rotational invariant Galerkin method for IBVPs involving kinetic equations with an55
unbounded velocity domain.56

Other approximation schemes that lead to a rotational invariant approximation (for both bounded57
and unbounded velocity spaces) use spherical harmonics instead of Grad’s Hermite polynomials; see58
[2, 5, 10]. Preliminary analysis shows that our framework is extendable to such approximations. Indeed,59
using our current framework one can even analyse the convergence of a general rotational invariant60
Galerkin scheme for a general rotational invariant kinetic equation considered in [1]. Moreover, our61
framework has an extension to linear approximations of the non-linear Boltzmann equation [13]. We62
leave an extension of our framework to other linear kinetic equations as a part of our future work.63

A summary of the article’s structure is as follows: the first section discusses the kinetic equation and64
its Grad’s moment approximation; the second section discusses the projection operator and contains the65
main convergence result; the fourth section discusses an example of the linear kinetic equation that arises66
from the kinetic gas theory and; the fifth section contains our numerical experiment.67

1. Linear Kinetic Equation68

With f : (0, T )×Ω×Rd → R we represent the solution to our kinetic equation where Ω is the physical69
space, (0, T ) is a bounded temporal domain and Rd is the velocity space. For simplicity, we focus most of70
our discussion on the case for which the spatial domain is the open half-space Ω := R−×Rd−1 (1 ≤ d ≤ 3).71
In subsection 2.2 we discuss how our framework can be extended to general C2 spatial domains. With72
V := (0, T )×Ω we represent the space-time domain and with D := V ×Rd we represent our space-time-73
velocity domain. With ∇t,x := (∂t, ∂x1 , . . . , ∂xd) we denote the gradient operator along the space-time74
domain and using it we define the following operator75

(1.1)
L :=∂t +

d∑
i=1

ξi∂xi −Q, ξ ∈ Rd,

=(1, ξ) · ∇t,x −Q,

76

where Q : L2(Rd) → L2(Rd) is the collision operator. The second form of the above operator will be77
helpful in understanding the regularity of a strong solution of an IBVPs involving L. We restrict our78
analysis to the case for which the operator Q satisfies the conditions enlisted below. Later, in section 3,79
we give examples of collision operators that satisfy the assumption below.80

Assumption 1. We assume that Q : L2(Rd) → L2(Rd) is: (i) linear, (ii) bounded, (iii) negative81
semi-definite, and (iv) self-adjoint.82

We consider L as a mapping from HL to L2(D) where HL is the graph space of L and is defined as83

HL := {v ∈ L2(D) : Lv ∈ L2(D)} where ‖f‖2HL := ‖f‖2L2(D)+‖Lf‖2L2(D).(1.2)8485

For IBVPs involving the operator L, we need to define trace operators over HL. To define these trace86
operators, we first define the following boundaries of the set D = (0, T )× Ω× Rd87

Σ± := (0, T )× ∂Ω±ξ , V ± := {T±} × Ω× Rd, ∂D := Σ+ ∪ Σ− ∪ V + ∪ V −,8889

where we set T+ = T and T− = 0. Moreover, ∂Ω±ξ is a result of splitting ∂Ω×Rd into two non-overlapping90

parts and is defined as: ∂Ω±ξ := ∂Ω × R± × Rd−1. Thus ∂Ω+
ξ and ∂Ω−ξ are sets containing points in91

∂Ω× Rd corresponding to outgoing and incoming velocities, respectively. Using these boundary sets, in92
the following we define the relevant trace operators. A detailed derivation of these operators can be found93
in [28].94

Definition 1.1. Traces of functions in HL are well-defined in L2(∂D, |ξ1|), i.e., in the L2 space of
functions over ∂D with the Lebesgue measure weighted with |ξ1|. We denote the trace operator by

γD : HL → L2(∂D, |ξ1|).

To restrict γD to Σ± and Σ = Σ+ ∪ Σ−, we define γ±f = γDf |Σ± and γf = γDf |Σ. Similarly, we95
interpret f(T±) as f(T±) = γDf |V ± .96

Using the above trace operators, we give the following IBVP97

Lf = 0 in D, f(0) = fI on V −, γ−f = fin on Σ−,(1.3)9899
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where fI ∈ L2(Ω × Rd) and fin ∈ L2(Σ−; |ξ1|) ∩ L2(R− × Rd−1;H1/2(∂Ω × (0, T ))) are some suitable100
initial and boundary data, respectively. Here H

1
2 denotes a standard fractional Sobolev space. The101

reason behind assuming fI to be in L2(Ω×Rd) and fin to be in L2(Σ−, |ξ1|) is clear from the definition102
of trace operators whereas, the assumption that fin ∈ L2(R− × Rd−1;H1/2(∂Ω × (0, T ))) will be made103
clear in assumption 2.104

We stick to strong solutions of the above IBVP and we define them as follows [28].105

Definition 1.2. Let f ∈ HL where HL is as given in (1.2). Then, f is a strong solution to the linear106
kinetic equation if it satisfies107

〈v,Lf〉L2(D) = 0, ∀ v ∈ L2(D), γ−f = fin, f(0) = fI .108109

It has been shown in [28] that the IBVP (1.3) has a unique strong solution and for our convergence110
analysis, we will make additional regularity assumptions on this strong solution. We start with defining111
the notion of moments.112

1.1 Moments and Hermite polynomials We define tensorial Hermite polynomials with113

the help of the multi-index β(i) as114

(1.4) ψβ(i)(ξ) :=
d∏
p=1

He
β

(i)
p

(ξp) , β(i) :=
(
β

(i)
1 , . . . , β

(i)
d

)
,115

where, the Hermite polynomials (Hek) enjoy the property of orthogonality and recursion116

1√
2π

∫
R
Hei (ξ)Hej (ξ) exp

(
−ξ

2

2

)
dξ = δij ⇒

∫
Rd
ψβ(k)ψβ(l)f0dξ =

d∏
p=1

δ
β

(k)
p β

(l)
p
,(1.5a)117

√
i+ 1Hei+1 (ξ) +

√
iHei−1 (ξ) = ξHei (ξ) .(1.5b)118119

Above, f0 is a Gaussian weight given as120

f0(ξ) := exp (−ξ · ξ/2) / d
√

2π.(1.6)121122

The quantity ‖β(i)‖l1 is the so-called degree of the basis function ψβ(i) . Below we define the ‖β(i)‖l1-th123
order moment of a function in L2(Rd).124

Definition 1.3. Let n(m) represent the total number of tensorial Hermite polynomials (i.e. ψβ(i)(ξ))125
of degree m and let ψm(ξ) ∈ Rn(m) represent a vector containing all of such basis functions. Using ψm(ξ),126
we define λm : L2(Rd)→ Rn(m) as: λm(r) =

∫
Rd
√
f0ψm(ξ)r(ξ)dξ, ∀r ∈ L2(Rd). Thus, λm(r) represents127

a vector containing all the m-th order moments of r. To collect all the moments of r which are of order128
less than or equal to M (m ≤M), we additionally define129

ΨM (ξ) = (ψ0(ξ)′, ψ1(ξ)′, . . . , ψM (ξ)′)′ , ΛM (r) = (λ0(r)′, λ1(r)′, . . . , λM (r)′)′ ,130131

where ΨM (ξ) ∈ RΞM and ΛM : L2(Rd) → RΞM with ΞM =
∑M
m=0 n(m) being the total number of132

moments. Above and in all of our following discussion, prime ( ′ ) over a vector will represent its133
transpose.134

1.2 Regularity Assumptions For further discussion we recall that V = Ω × (0, T ) and135
D = V ×Rd. With Ck([0, T ];X) we denote a k-times continuously differential function of time with values136
in some Hilbert space X. We equip Ck([0, T ];X) with the norm ‖g‖Ck([0,T ];X)= maxj≤k‖∂jt g‖C0([0,T ];X)137
where ‖g‖C0([0,T ];X)= maxt∈[0,T ]‖g(t)‖X .138

To capture velocity space regularity of solutions, we make use of the Hermite-Sobolev space W k
H(Rd)139

which is the image of L2(Rd) under the inverse of the Hermite Laplacian operator (∆H)k = (−2∆+ 1
2ξ·ξ)

k;140
see [25] for details. One can show that a tensorial Hermite polynomial (ψβ(m)) is an eigenfunction of ∆H141
with an eigenvalue of (2m+ d) and therefore, one can define norm of functions in L2(Ω;W k

H(Rd)) as142

‖f‖L2(Ω;Wk
H

(Rd)):=
( ∞∑
m=0

(2m+ d)2k‖λm(f(t, ., .))‖2L2(Ω;Rn(m)))

)1/2

.143
144

For further discussion we assume that the solution to our IBVP, along with its derivatives, lies in145
C0([0, T ];L2(Ω;W k

H(Rd))) for some k. We summarise this assumption in the following.146
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Assumption 2. Let f be a strong solution to the kinetic equation (1.3). We assume that there exist147

numbers ke/o ≥ 0, ke/ot ≥ 0 and ke/ox ≥ 0 such that148

fe/o ∈ C0([0, T ];L2(Ω;W ke/o

H (Rd))), (∂tf)e/o ∈ C0([0, T ];L2(Ω;W k
e/o
t

H (Rd))),149

(∂xif)e/o ∈ C0([0, T ];L2(Ω;W ke/ox

H (Rd))), ∀ i ∈ {1, . . . , d}.150151

Above, (.)e and (.)o denote the even and odd parts (of the various quantities) defined with respect to ξ1
i.e.

fo(ξ1, ξ2, ξ3) = 1
2 (f(ξ1, ξ2, ξ3)− f(−ξ1, ξ2, ξ3)) , fe(ξ1, ξ2, ξ3) = 1

2 (f(ξ1, ξ2, ξ3) + f(−ξ1, ξ2, ξ3)) .

Note that for simplicity we have assumed the same degree of regularity for all spatial derivatives.152
Extending the forthcoming results to cases where different spatial derivatives have different degrees of153
regularity is straightforward.154

To understand the relation between a standard Sobolev space and the Hermite-Sobolev space, we
recall the following result [25] (see Theorem 2.1)

W k
H(Rd) ⊆ H2k(Rd) ⊆ L2(Rd), ∀ k ≥ 0,

where Hk(Rd) represents a standard Sobolev space and the last inclusion results from its definition.155
Above relation and the assumption in assumption 2 trivially implies that the space-time gradient of f156
(i.e. ∇t,xf) is in L2(D;Rd+1) which further leads to157

f ∈ L2(Rd;H1(Ω)) ∩HL.(1.7)158159

Later, during the convergence analysis error terms will appear along the boundary (∂Ω × (0, T ))160
involving the moments of the traces of f , i.e. λm(γf), and due to assumption 2 these error terms are161
well-defined. Indeed, λm(γf) is an element of H 1

2 (∂Ω × (0, T );Rn(m)). Note that for strong solutions,162
the moments of the traces are not necessarily well-defined. The fact that γf ∈ L2(Rd;H 1

2 (∂Ω× (0, T )))163
is required by our analysis is the reason why we assume the boundary data (fin in (1.3)) to be in164
L2(Σ−; |ξ1|) ∩ L2(R− × Rd−1;H1/2(∂Ω× (0, T ))), since for compatibility we want γ−f = fin on Σ−.165

1.3 Moment Approximation166

Even and Odd basis functions: To formulate boundary conditions for our moment approximation167
(discussed next), we first need the notion of even and odd moments.168

Definition 1.4. Let no(m) and ne(m) denote the total number of tensorial Hermite polynomials169
in ψm(ξ) which are odd and even, with respect to ξ1, respectively. Similarly, let ψom(ξ) ∈ Rno(m) and170
ψem(ξ) ∈ Rne(m) represent vectors containing those basis functions out of ψm(ξ) which are odd and even,171
with respect to ξ1, respectively. Then, we define λom : L2(Rd) → Rno(m) and λem : L2(Rd) → Rne(m) as:172
λom(r) =

〈
ψom
√
f0, r

〉
L2(Rd) and λem(r) =

〈
ψem
√
f0, r

〉
L2(Rd) where r ∈ L2(Rd). To collect all the odd and173

even moments of r which have a degree less than or equal to M (m ≤M), we define174

Ψo
M (ξ) = (ψo1(ξ)′, ψo2(ξ)′, . . . ψoM (ξ)′)′ , Ψe

M (ξ) = (ψe0(ξ)′, ψe1(ξ)′, . . . ψeM (ξ)′)′ ,175

ΛoM (r) = (λo1(r)′, λo2(r)′, . . . λoM (r)′)′ , ΛeM (r) = (λe0(r)′, λe1(r)′, . . . λeM (r)′)′ ,176177

where ΛoM : L2(Rd)→ RΞMo , ΛeM : L2(Rd)→ RΞMe , Ψo
M (ξ) ∈ RΞMo and Ψe

M (ξ) ∈ RΞMe . We represent the178
total number of odd and even moments of degree less than or equal to M through ΞMo =

∑M
i=1 no(i) and179

ΞMe =
∑M
i=0 ne(i) respectively.180

Expressions for boundary conditions become compact if we define the following matrices.181

Definition 1.5. We define182

A
(p,r)
ψ =

〈
Ψo
pξ1
√
f0, (ψer)

′√
f0

〉
L2(Rd)

, A
(p,q)
Ψ =

(
A

(p,1)
ψ , A

(p,2)
ψ , . . . , A

(p,q)
ψ

)
.183

184

We interpret
〈

Ψo
pξ1
√
f0, (ψer)

′ √
f0

〉
L2(Rd)

as a matrix whose elements contain L2(Rd) inner product be-185

tween different elements of vectors Ψo
p

√
f0 and ξ1ψ

e
r

√
f0. Therefore, A(p,r)

ψ is a matrix with real entries186

of dimension Ξpo × ne(r). Moreover by definition, A(p,r)
ψ are the different groups of columns of A(p,q)

Ψ for187
r ∈ {1, . . . , q}.188
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Recall that both Ψe
q(ξ) and ψeq(ξ) are vectors but Ψe

q(ξ) contains all those basis functions that have a189
degree less than or equal to q whereas, ψeq(ξ) contains basis function of degree equal to q. Similar to the190
above matrices, we define the following matrices, which also contain the inner products between Hermite191
polynomials but on a half velocity space.192

Definition 1.6. We define193

B
(p,r)
ψ = 2

〈
Ψo
p

√
f0, (ψer)

′√
f0

〉
L2(R+×Rd−1)

, B
(p,q)
Ψ =

(
B

(p,1)
ψ , B

(p,2)
ψ , . . . , B

(p,q)
ψ

)
,194

195

where B(p,r)
ψ ∈ RΞpo×ne(r). Similar to A

(p,r)
ψ defined above, B(p,r)

ψ ∈ RΞpo×ne(r) are the different groups of196

columns of B(p,q)
Ψ for r ∈ {1, . . . , q}.197

Test and Trial Space: To approximate the strong solution (see Theorem 1.2) to our kinetic equation198
(1.3), we use a Petrov-Galerkin type approach where we approximate the velocity dependence in the test199
space (i.e. L2(D)) and in the solution space (i.e. HL) through a finite Hermite series expansion (1.4).200
Indeed, for our Petrov-Galerkin approach, we choose the following test (XM ) and the solution space201
(HM )202

(1.8)
(
L2(Rd;H1(V )) ∩HL

)
⊃ HM := {α ·ΨM

√
f0 : α ∈ H1(V ;RΞM )},

L2(D) ⊃ XM := {α ·ΨM

√
f0 : α ∈ L2(V ;RΞM )},

203

where ΨM is a vector containing all the Hermite polynomials up to a degree M , see Theorem 1.3. Since204
α ∈ H1(V ;RΞM ), trivially, HM is a subset of L2(Rd;H1(V )), which means that our Galerkin method is205
conforming. However, the fact that HM ⊂ HL is not obvious and we prove it in the following result.206

Lemma 1.7. Let HM be as defined in (1.8) then, HM ⊂ HL.207

Proof. Let f ∈ HM . To prove our claim we need to show that Lf ∈ L2(D) for which we only need208
to show that ξ · ∇xf ∈ L2(D); definition of HM and boundedness of Q on L2(Rd) already implies that209
∂tf ∈ L2(D) and Q(f) ∈ L2(D). We show that ξ · ∇xf ∈ L2(D) by proving that ξi∂xif ∈ L2(D) for all210
i ∈ {1, . . . , d}. For brevity we consider i = 1, for other values of i result follows analogously. Computing211
‖ξ1∂x1f‖2L2(D) by expressing f as f = α ·ΨM

√
f0, we find212

‖ξ1∂x1f‖2L2(D)= ‖(∂x1α)
′
A∂x1α‖L2(V )≤ C‖∂x1α‖2L2(V ;RΞM )<∞,213

where A =
〈
ΨM

√
f0, ξ

2
1ΨM

√
f0
〉
L2(Rd). Above, the first inequality is a result of each entry of A being214

bounded and the last inequality is a result of α ∈ H1(V ;RΞM ).215

Remark 1. Note that for the BGK and the Boltzmann collision operator (given in section 3),
√
f0216

is the global equilibrium. Therefore, for both of these operators, an approximation in HM (given in (1.8))217
is equivalent to expanding around the global equilibrium. This ensures that there exists a finite M such218
that219

ker(Q) ⊆ span{ψβ(i)

√
f0}‖β(i)‖l1=1,...,M .(1.9)220221

The equilibrium state of the kinetic equation belongs to ker(Q) and the above conditions allows one to222
compute the same numerically. Note that for the linearised Boltzmann and the BGK operator, the above223
condition holds for M = 2 [4].224

Collision operators of practical relevance known to us have
√
f0 (or f0 depending on the scaling) as225

their global equilibrium. If the global equilibrium is different from f0, say f̂0, then an expansion around f̂0226
results in an approximation space different from HM . If this approximation space has basis functions that227
satisfy the property of recursion (1.5b), orthogonality (1.5a), totality in L2(Rd), even/odd parity (given228
in Theorem 1.4), etc., then we expect to have results similar to what we propose here. Considering a229
different approximation space is out of scope of the present work.230

Variational Formulation: To develop our Galerkin approximation, in the definition of the strong231
solution (given in Theorem 1.2), we restrict the test space and the trial space to XM and HM , respectively.232
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This provides233

Find fM ∈ HM such that234

〈v,LfM 〉L2(D) = 0, ∀ v ∈ XM , ΛM (fM (0)) = ΛM (fI) on Ω,(1.10a)235

ΛoM (γfM ) = R(M)A
(M,M)
Ψ ΛeM (γfM ) + G(fin) on (0, T )× ∂Ω,(1.10b)236237

where R(M) ∈ RΞMo ×R
ΞMo is a s.p.d matrix given as [22]238

R(M) = B
(M,M−1)
Ψ

(
A

(M,M−1)
Ψ

)−1
.(1.11)239

240

Invertibility of the matrix A(M,M−1)
Ψ follows from the recursion relation (1.5b) and is discussed in detail241

in appendix-B. Moreover, G : L2(R− × Rd−1) → RΞMo is defined as: G(fin) := 〈Ψo
M , fin〉L2(R−×Rd−1).242

Thus, G(fin) is a vector containing all the half-space odd moments of fin. The variational form in (1.10a)243
and its initial condition follow trivially from the definition of a strong solution given in Theorem 1.2.244
However, the derivation of boundary conditions (1.10b) is more involved and one can find details of this245
derivation in [19, 21, 22]. For brevity, we refrain from discussing these details here.246

The Galerkin formulation (1.10a) is L2-stable and its stability results from the specific form of247
the boundary conditions given in (1.10b). Since stability will be crucial for developing error bounds,248
we present a brief derivation of the stability estimate. We choose v as fM in (1.10a), consider (for249
simplicity) fin = 0, use the negative semi-definiteness of Q and perform integration-by-parts on the250
space-time derivatives to find251
(1.12)
‖fM (T )‖2L2(Ω×Rd)−‖fM (0)‖2L2(Ω×Rd)≤− 2

〈
ΛoM (γfM ), A(M,M)

Ψ ΛeM (γfM )
〉
L2((0,T )×∂Ω;RΞMo )

=− 2
〈
A

(M,M)
Ψ ΛeM (γfM ), R(M)A

(M,M)
Ψ ΛeM (γfM )

〉
L2((0,T )×∂Ω;RΞMo )

≤0,

252

where the last inequality is a result of R(M) being s.p.d and all the boundary integrals are well-defined253
because ΛM (γfM ) ∈ L2(V ;RΞM ), which is a result of our definition of HM given in (1.8). Moreover, the254

integral on the boundary involving A(M,M)
Ψ results from the following, which results from the orthogonality255

of even and odd Hermite polynomials256

(1.13)

∫
Rd
ξ1(γfM )2dξ =2

∫
Rd
ξ1(γfM )o(γfM )edξ

=2
∫
Rd

(
ΛoM (γfM ) ·Ψo

M (ξ)
√
f0

)
ξ1

(
Ψe
M (ξ) · ΛeM (γfM )

√
f0

)
dξ

=2
〈

ΛoM (γfM ), A(M,M)
Ψ ΛoM (γfM )

〉
RΞMo

.

257

258

Remark 2. The variational form in (1.10a) is the same that leads to the Grad’s moment equations259
[14]. However, through (1.10a), we only recover the so-called full moment approximations [3, 26].260

Remark 3. Grad [14] prescribes boundary conditions through ΛoM (γfM ) = B
(M,M)
Ψ ΛeM (γfM )+G(fin)261

but they lead to L2-instabilities [19, 21]. To see the difference between Grad’s boundary conditions and262
those which lead to stability (1.10b), we use the expression for R(M) from (1.11) and subtract the boundary263
matrix in (1.10b) with the Grad’s boundary matrix to find264

R(M)A
(M,M)
Ψ −B(M,M)

Ψ =
(

0,
[
R(M)A

(M,M)
ψ −B(M,M)

ψ

])
.(1.14)265

266
The above relation implies that the two boundary conditions differ only in terms of the highest order even267
moments of fM i.e. through λeM (fM (t, x, .)). This difference will show up in the convergence analysis268
and will influence the convergence order of our moment approximation.269

Remark 4. In [10], authors consider an IBVP for the radiative transport equation and develop a270
L2-stable moment approximation for the same. Comparing our approach to that proposed in [10] is271
ongoing research and we hope to cater to it in the future. The framework proposed in [10] considers a272
bounded velocity domain, which does not have a radial direction. Therefore, the first step is to extend this273
framework to an unbounded velocity domain, and then to compare it to ours.274
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2. Convergence Analysis275

We outline the forthcoming convergence analysis in the following steps.276
(i) Define a Projection Operator: we define a projection operator Π̂M : L2(Rd;H1(V ))→ HM (with277

HM as defined in (1.8)) such that the trace of the projection satisfies the same type of boundary278
conditions as those satisfied by the moment approximation (1.10b). Such a projection operator279
helps us exploit the stability of the moment approximation (1.12) during error analysis.280

(ii) Decompose the error: we decompose the moment approximation error into two parts281

EM = f − fM = f − Π̂Mf︸ ︷︷ ︸
PM

+ Π̂Mf − fM︸ ︷︷ ︸
eM

.(2.1)282

283

Above, eM is the error in moments (or the expansion coefficients) and PM is the projection error.284
(iii) Bound for the projection error: we derive a bound for ‖PM‖L2(D) in terms of the moments of the285

solution, and using our regularity assumption (see assumption 2) we show that ‖PM‖L2(D)→ 0286
as M →∞.287

(iv) Bound for the error in moments: Using stability of our moment approximation (1.12), we bound288
‖eM‖L2(D) in terms of ‖LPM‖L2(D), where L is the projection operator. We complete the analysis289
by showing that ‖LPM‖L2(D)→ 0 as M →∞.290

2.1 The Projection Operator We sketch our formulation of the projection operator Π̂M :291

L2(Rd;H1(V )) → HM . Let r ∈ L2(Rd;H1(V )). We represent the projection Π̂Mr generically through292

Π̂Mr =
(

Λ̂oM (r) ·Ψo
M + Λ̂eM (r) ·Ψe

M (r)
)√

f0 where Λ̂oM and Λ̂eM are linear functionals defined over293

L2(Rd). For now assume that Π̂Mr ∈ HM and that the trace of the projection (i.e. γΠ̂Mr) is such that294

γ(Π̂Mr) =
(

Λ̂oM (γr) ·Ψo
M + Λ̂eM (γr) ·Ψe

M

)√
f0. Once we define Λ̂oM and Λ̂eM , it will be trivial that both295

of these assumptions are satisfied. As mentioned earlier, we want γ(Π̂Mr) to satisfy moment approxima-296
tion’s boundary conditions (1.10b). Since these boundary conditions have no restriction over the even mo-297
ments, we choose Λ̂eM (r) to be the same as the even moments of r i.e. we choose Λ̂eM (r) = ΛeM (r). However,298
coefficients of the odd basis functions are constrained by moment approximation’s boundary conditions299
(1.10b) and thus we choose them as Λ̂oM (r) = R(M)A

(M,M)
Ψ ΛeM (r) +G(r). Such a choice of Λ̂oM (r) ensures300

that, provided the inflow part of r coincides with fin, we have Λ̂oM (γr) = R(M)A
(M,M)
Ψ ΛeM (γr) + G(fin)301

along the boundary, i.e. the projection satisfies the boundary conditions of the moment approximation302
(1.10b). In the following, we summarise our projection operator and, for convenience, we also define the303
orthogonal projection operator.304

Definition 2.1. We define Π̂M : L2(Rd;H1(V ))→ HM as305

r(·) 7→
(

Λ̂oM (r) ·Ψo
M (·) + ΛeM (r) ·Ψe

M (·)
)√

f0(·) with Λ̂oM (r) :=R(M)A
(M,M)
Ψ ΛeM (r) + G(r).306

Similarly, with XM as given in (1.8), we define the orthogonal projection operator ΠM : L2(D) → XM307
as308

(ΠMr)(ξ) = (ΛoM (r) ·Ψo
M (ξ) + ΛeM (r) ·Ψe

M (ξ))
√
f0(ξ), r ∈ L2(D).309310

Remark 5. In (1.10a), we prescribe the initial conditions using the orthogonal projection operator,311
but there is no unique way of doing so. Our convergence analysis covers all projection or interpolation312
operators which introduce errors that decay at least as fast as the moment approximation error (EM ).313
Upcoming convergence analysis will clarify the fact that both Π̂M and ΠM satisfy these criteria. Therefore,314
for simplification, we prescribe the initial conditions through fM (0) = Π̂MfI , which ensures that eM (0) =315
0. Note that implementing Π̂M is cumbersome and therefore for implementation, one might want to316
prescribe initial conditions using ΠM or some other (easier to implement) interpolation.317

Remark 6. Due to our definition of the projection operator Π̂M , the projection error PM (defined318
in (2.1)) is not orthogonal to the approximation space HM . This is in contrast to the analysis in [12, 23]319
where the use of an orthogonal projection operator leads to a PM that is orthogonal to the approximation320
space.321
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2 CONVERGENCE ANALYSIS

2.2 Extension to spatial domains with C2 boundaries: Velocity perpendicular322

to our spatial domain’s boundary is ξ1 and we have defined the projection operator (Π̂M ) with respect323

to this velocity, this is implicit in the definition of the operators G and A
(M,M)
Ψ . Since for the half-324

space (Ω = R− × Rd−1) the boundary normal is the same at every boundary point, the definition of the325
projection operator remains the same for all boundary points. However, for a spatial domain other than326
the half-space, the normal along the boundary varies which results in different boundary points having327
different projection operators. We briefly discuss a methodology to construct the projection operators328
for a C2-domain, which can have a normal that varies along the boundary.329

Let Ω ⊂ Rd be a domain with a C2 boundary. Then, for every point x0 ∈ ∂Ω we can define a line330
which passes through x0 and points towards the interior of the domain in the direction opposite to the331
normal at x0 (n(x0)): Lx0 := {x ∈ Ω : x− x0 = αn(x0), α ∈ R−}. Since the boundary is C2, there exists332
some δ > 0 such that Ωδ := {x ∈ Ω : dist(x, ∂Ω) ≥ δ} has the property that no two lines Lx0 and Lx1 ,333
for any x0, x1 ∈ ∂Ω, intersect within Ωcδ.334

Inside Ωδ we use the orthogonal projection ΠM whereas outside of Ωδ we proceed as follows. For
every x ∈ Ωcδ (by definition of Ωδ) there exists a unique x0 such that x ∈ Lx0 . Let Π̂x0

M denote the
projection operator accounting for the boundary conditions at x0. Then at x we define the projection
operator to be the linear combination of the projection operator which satisfies the boundary conditions,
Π̂x0
M , and the orthogonal projection operator ΠM

Π̂x
M :=

(
1− |x− x0|

δ

)
Π̂x0
M + |x− x0|

δ
ΠM .

In this way, x 7→ Π̂x
M (fM (., x, .)) satisfies the desired boundary conditions and is C1.335

Remark 7. We emphasize that the projection operator defined in Theorem 2.1 is an analytical tool336
defined such that the projection satisfies the same boundary conditions as those satisfied by the moment337
approximation. It is nowhere needed for computing the moment approximation. This is also clear from the338
variational formulation given in (1.10a), where we set to zero the orthogonal projection of the evolution339
equation onto the approximation space.340

2.3 Main Result In the following, we summarise our main convergence result.341

Theorem 2.2. We can bound the error in the moment approximation, EM = f − fM , as342

(2.2) ‖EM (T )‖L2(Ω×Rd)≤ ‖f(T )− Π̂Mf(T )‖L2(Ω×Rd)+T (A1(T ) + ‖Q‖A2(T ) +A3(T ))343

where344

A1(T ) =
(

Θ(M)‖λeM (∂tf)‖C0([0,T ];L2(Ω;Rne(M)))345

+
√

2
∑

β∈{e,o}

1
(2(M + 1) + d)kβt

‖(∂tf)o ‖
C0([0,T ];L2(Ω;W

k
β
t

H
(Rd)))

 ,(2.3a)346

A2(T ) =
(

Θ(M)‖λeM (f)‖C0([0,T ];L2(Ω;Rne(M)))347

+
√

2
∑

β∈{e,o}

1
(2(M + 1) + d)kβ

‖fβ‖
C0([0,T ];L2(Ω;Wkβ

H
(Rd)))

 ,(2.3b)348

A3(T ) =
d∑
i=1

(
Θ(M)‖A(M,M)

Ψ ‖2‖λeM (∂xif)‖C0([0,T ];L2(Ω;Rne(M)))349

+
√

(M + 1)‖λM+1(∂xif)‖C0([0,T ];L2(Ω;Rn(M+1)))

)
350

+ ‖A(M,M)
Ψ ‖2

(2(M + 1) + d)kex

d∑
i=1
‖(∂xif)e ‖

C0([0,T ];L2(Ω;Wkex
H

(Rd)))
,(2.3c)351

Θ(M) =‖R(M)A
(M,M)
ψ −B(M,M)

ψ ‖2.(2.3d)352353

As M →∞, we have the convergence rate354

(2.4) ‖EM (T )‖L2(Ω×Rd)≤
C

Mω
, ω = min

{
ke/o − 1

2 , k
e/o
t − 1

2 , k
e
x − 1, kox −

1
2

}
.355
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2.4 Error Equation

The motivation behind decomposing the right hand side into the different Ai’s is that each of these terms356
vanishes in different physical settings. The term A1 vanishes for steady state problems i.e. for ∂tf = 0,357
the term A2 vanishes in the absence of collisions, and the term A3 vanishes under spatial homogeneity358
i.e. for ∂xif = 0.359

An alternative way to understand the right hand side of the error bound given in Theorem 2.2 is to360
identify the following four different types of errors:361

(i) Projection Error: This is the first term appearing on the right side of the error bound in (2.2)362
and is the PM defined in (2.1).363

(ii) Closure Error: This is the second term appearing in A3(T ) (2.3c) and involves the M + 1-th364
order moment of ∂xif . The term accounts for the influence of the flux of the M + 1-th order365
moment which was dropped out during the moment approximation.366

(iii) Boundary Stabilisation Error: These are all the terms involving Θ(M) and are all the first terms367
appearing in (2.3a)-(2.3c). These terms are a result of the difference between the boundary368
conditions proposed by Grad [14] and those given in (1.10b) which lead to a stable moment369
approximation; remark 3 explains the difference between the two boundary conditions. Since370
the two boundary conditions only differ in the coefficients of the highest order even moment (see371
(1.14)), this error depends only upon this highest order even moment.372

(iv) Boundary Truncation Error: These are all the terms which are not included in the above defini-373
tions. They are a result of ignoring contributions from all those even (and odd) moments which374
have an order greater than M and do not appear in the boundary conditions for the moment375
approximation (1.10b).376

We prove Theorem 2.2 in the next few pages.377

2.4 Error Equation To derive a bound for the moment approximation error378
(i.e. for ‖EM (T )‖L2(Ω×Rd)) we first derive a bound for the error in the expansion coefficients (i.e. for379
‖eM (T )‖L2(Ω×Rd)) and then use triangle’s inequality to arrive at a bound for ‖EM (T )‖L2(Ω×Rd); see (2.1)380
for definition of EM and eM . In the following discussion we suppress dependencies on x and ξ, for brevity.381

We start with adding and subtracting L(Π̂Mf) in the definition of a strong solution given in Theo-382
rem 1.2. For all v ∈ XM , and for all t ∈ (0, T ), considering the integral over Ω× Rd provides383 〈

v(t),L(Π̂Mf(t))
〉
L2(Ω×Rd)

=
〈
v(t),L(Π̂Mf(t)− f(t))

〉
L2(Ω×Rd)

,

=
〈
v(t),ΠML(Π̂Mf(t)− f(t))

〉
L2(Ω×Rd)

,
384

where XM ⊂ L2(D) is as defined in (1.8). For the last equality we have used the trivial relation:385
〈v(t), w(t)〉L2(Ω×Rd) = 〈v(t),ΠMw(t)〉L2(Ω×Rd) ,∀(v, w) ∈ XM × L2(D). Subtracting the above relation386
from our moment approximation (1.10a), and using the linearity of L, we find387

(2.5) 〈v(t),L(eM (t))〉L2(Ω×Rd) =
〈
v(t),ΠML(f(t)− Π̂Mf(t))

〉
L2(Ω×Rd)

∀ v ∈ XM , ∀ t ∈ (0, T ),388

where eM is as given in (2.1). To derive a bound for eM , we want to use the stability of our moment389
approximation (1.12). We do so by choosing v(t) = eM (t) in the above expression and by performing390
integration-by-parts on the spatial derivatives, which provides391

392
(2.6) 〈eM (t), ∂teM (t)〉L2(Ω×Rd) − 〈eM (t), QeM (t)〉L2(Ω×Rd)393

≤
〈
eM (t),ΠML(f(t)− Π̂Mf(t))

〉
L2(Ω×Rd)

−
∮
∂Ω

∫
Rd
ξ1(γeM (t))2dξds︸ ︷︷ ︸
≥0

.394

395

Later (in section 3) we present physically relevant examples where the non-dimensionalisation of the396
kinetic equation results in the so-called Knudsen number, the inverse of which scales the collision operator.397
Depending on whether or not we are interested in the low Knudsen number regime, we can proceed with398
the above bound in different ways. Here we consider a Knudsen number that is large enough and postpone399
the discussion of small Knudsen numbers to subsection 2.7. Since Q is negative semi-definite, using the400
Cauchy-Schwartz inequality to the above bound provides401

(2.7) 〈eM (t), ∂teM (t)〉L2(Ω×Rd) ≤ ‖eM (t)‖L2(Ω×Rd)‖ΠML(f(t)− Π̂Mf(t))‖L2(Ω×Rd).402
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2 CONVERGENCE ANALYSIS

The integral over the boundary is positive because the trace of the projection (i.e γΠ̂Mf) satisfies the403
same boundary conditions as those satisfied by our moment approximation (1.10b). To see this more404
clearly, consider the following relation which results from the even-odd decoupling (1.13) and the moment405
equation’s boundary conditions406 ∮

∂Ω

∫
Rd
ξ1(γeM (t))2dξds =

∮
∂Ω

(ΛoM (γeM (t)))
′
A

(M,M)
Ψ ΛeM (γeM (t))ds,

=
∮
∂Ω

(ΛeM (γeM (t)))
′ (
A

(M,M)
Ψ

)′
R(M)A

(M,M)
Ψ ΛeM (γeM (t))ds ≥ 0.

407

The last inequality is a result of R(M) being s.p.d. Using the fact that 〈eM (t), ∂teM (t)〉L2(Ω×Rd) =408
‖eM (t)‖L2(Ω×Rd)∂t‖eM (t)‖L2(Ω×Rd) in (2.7), dividing throughout by ‖eM (t)‖L2(Ω×Rd) (result is trivial for409
eM = 0) and integrating over time provides the following bound410

(2.8)
‖eM (T )‖L2(Ω×Rd)≤

∫ T

0
‖ΠML(f(t)− Π̂Mf(t))‖L2(Ω×Rd)dt,

≤T‖ΠML(f(t)− Π̂Mf(t))‖C0([0,T ];L2(Ω×Rd)).

411

Above, our choice of the initial conditions (see remark 5 ) results in eM (0) = 0. To spell out the above412
term on the right, we use the definition of L from (1.1), the boundedness assumption on Q and triangle’s413
inequality to find414

(2.9)

‖ΠML(f(t)− Π̂Mf(t))‖L2(Ω×Rd)≤‖∂tf(t)− Π̂M∂tf(t)‖L2(Ω×Rd)+‖Q‖‖f(t)− Π̂Mf(t)‖L2(Ω×Rd)

+
d∑
i=1
‖ΠM

(
ξi

(
∂xif(t)− Π̂M∂xif(t)

))
‖L2(Ω×Rd).

415

We can further simplify ‖ΠM

(
ξi

(
∂xif(t)− Π̂M∂xif(t)

))
‖L2(Ω×Rd) by adding and subtracting416

ΠMξiΠM∂xif(t). Then, triangle’s inequality provides417

(2.10)
‖ΠM

(
ξi

(
∂xif(t)− Π̂M∂xif(t)

))
‖L2(Ω×Rd)≤

(
‖ΠM

(
ξi

(
ΠM∂xif(t)− Π̂M∂xif(t)

))
‖L2(Ω×Rd)

+‖ΠM (ξi (∂xif(t)−ΠM∂xif(t))) ‖L2(Ω×Rd)
)
.

418

To simplify the first term on the right we use (page-80, [23])419

‖ΠM

(
ξi

(
ΠM∂xif(t)− Π̂M∂xif(t)

))
‖L2(Ω×Rd)≤ ‖A

(M,M)
Ψ ‖2‖

(
ΠM∂xif(t)− Π̂M∂xif(t)

)
‖L2(Ω×Rd).

(2.11)
420
421

Moreover, to simplify the second term on the right in (2.10) we use the orthogonality and the recursion422
of Hermite polynomials to find423

(2.12)
‖ΠM (ξi (∂xif(t)−ΠM∂xif(t))) ‖L2(Ω×Rd)=‖ΠM

(
ξi (λM+1(∂xif(t)) · ψM+1)

√
f0

)
‖L2(Ω×Rd)

≤
√

(M + 1)‖λM+1(∂xif(t))‖L2(Ω;Rn(M+1)).
424

Substituting (2.10)-(2.12) into (2.9) and substituting the resulting expression into the bound for eM , we425
find the following bound for ‖EM (T )‖L2(Ω×Rd)426

(2.13)
‖EM (T )‖L2(Ω×Rd)≤‖f(T )− Π̂Mf(T )‖L2(Ω×Rd)+‖eM (T )‖L2(Ω×Rd)

≤‖f(T )− Π̂Mf(T )‖L2(Ω×Rd)+T
(
Ã1(T ) + ‖Q‖Ã2(T ) + Ã3(T )

)
,

427

with428

(2.14)

Ã1(T ) := ‖∂tf − Π̂M∂tf‖C0([0,T ];L2(Ω×Rd)),

Ã2(T ) := ‖f − Π̂Mf‖C0([0,T ];L2(Ω×Rd)),

Ã3(T ) :=
√

(M + 1)
d∑
i=1
‖λM+1(∂xif)‖C0([0,T ];L2(Ω;Rn(M+1)))

+ ‖A(M,M)
Ψ ‖2

d∑
i=1
‖ΠM∂xif − Π̂M∂xif‖C0([0,T ];L2(Ω×Rd)).

429
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2.5 Projection Error

The above expression is a bound for the moment approximation error in terms of the closure error and430
the projection error of different quantities. Rate of convergence for the closure error will trivially follow431
from the velocity space regularity assumption made in assumption 2. Therefore, to complete our proof432
of Theorem 2.2 we develop a bound for the norm of A(M,M)

Ψ and a bound for the projection error. In433
particular, Theorem 2.5 will show434

(2.15) Ãi(T ) ≤ Ai(T ) for i = 1, 2, 3,435

where Ai(T ) are as defined in Theorem 2.2.436

2.5 Projection Error The following result shows that we can express the odd moments of437
any r ∈ L2(Rd) in terms of its even moments and the function G defined in (1.10b). The result will allow438
us to quantify the projection error in terms of the odd and the even moments of degree higher than M439
which were left out while defining the projection operator Π̂M .440

Lemma 2.3. For every r ∈ L2(Rd), it holds441 〈
Ψo
M

√
f0, r

o
〉
L2(Rd)

= 2
〈

Ψo
M

√
f0, r

e
〉
L2(R+×Rd−1)

+ G(r),(2.16)442
443

or equivalently ΛoM (r) = limq→∞B
(M,q)
Ψ Λeq(r) + G(r) where ro and re are the odd and even parts of444

r, with respect to ξ1, respectively, and G is as given in (1.10b). We interpret limq→∞B
(M,q)
Ψ Λeq(r) as445

limq→∞

(
B

(M,q)
Ψ Λeq(r)

)
where B

(M,q)
Ψ is as given in Theorem 1.6 and the limit is well-defined for all446

r ∈ L2(Rd).447

Proof. See appendix-A.448

In the following result, we collect all the relevant bounds on different matrices and operators. We will449
use these bounds to formulate the convergence rate of the projection error.450

Lemma 2.4.451
(i) For limq→∞B

(M,q)
Ψ it holds ‖limq→∞B

(M,q)
Ψ ‖≤ 1 where limq→∞B

(M,q)
Ψ is as given in Theo-452

rem 2.3.453

(ii) For A(M,M)
Ψ and A(M,M−1)

Ψ it holds: ‖
(
A

(M,M−1)
Ψ

)−1
A

(M,M)
ψ ‖2≤ C

√
M and ‖A(M,M)

Ψ ‖2≤ C
√
M.454

Proof. See appendix-C.455

Using the above results, in the following we develop a convergence rate and an error bound for the456
projection error.457

Lemma 2.5. Let re/o ∈ C0([0, T ];L2(Ω;W ke/o

H (Rd))) then we can bound ‖Π̂Mr(t)− r(t)‖2L2(Ω×Rd) as458

‖Π̂Mr(t)− r(t)‖2L2(Ω×Rd)≤(Θ(M))2‖λeM (r(t))‖2L2(Ω;Rne(M))459

+ 2
∑

β∈{e,o}

1
(2(M + 1) + d)2kβ ‖r

β(t)‖2
L2(Ω;Wkβ

H
(Rd))

,460

461

where Θ(M) = ‖R(M)A
(M,M)
ψ −B(M,M)

ψ ‖2 and dependency on x and ξ is hidden for brevity. Similarly, we462
can bound the difference between the orthogonal projection and the projection that satisfies the boundary463
conditions as464

‖Π̂Mr(t)−ΠMr(t)‖2L2(Ω×Rd)≤ (Θ(M))2‖λeM (r(t))‖2L2(Ω;Rne(M))+
1

(2(M + 1) + d)2ke ‖r
e(t)‖2

L2(Ω;Wke

H
(Rd)).465

466

As M →∞, we have the convergence rate467

‖Π̂Mr − r‖C0([0,T ];L2(Ω×Rd))≤ CM−ω̃, ‖Π̂Mr −ΠMr‖C0([0,T ];L2(Ω×Rd))≤ CM−(ke− 1
2 ),468469

where ω̃ = min
{
ko − 1

2 , k
e − 1

2
}

.470

Proof. We express r in terms of tensorial Hermite polynomials and use Theorem 2.3 to find471

r =
M∑
m=0

(λom(r) · ψom(ξ) + λem(r) · ψem(ξ))
√
f0, with ΛoM (r) = lim

q→∞
B

(M,q)
Ψ Λeq(r) + G(r),472

473

11



2 CONVERGENCE ANALYSIS

where ΛoM = (λo1(r)′, . . . , λoM (r)′) and ΛeM = (λe0(r)′, . . . , λeM (r)′). Moreover, the definition of Π̂Mr (see474
Theorem 2.1) provides475

Π̂Mr =
M∑
m=0

(
Λ̂om(r) ·Ψo

m(ξ) + Λem(r) ·Ψe
m(ξ)

)√
f0, with Λ̂oM (r) = R(M)A

(M,M)
Ψ ΛeM (r) + G(r),476

477

where Λ̂oM = (λ̂o1(r)′, . . . , λ̂oM (r)′). Subtracting r from Π̂Mr, using limq→∞B
(M,q)
Ψ Λeq(r) =

∞∑
q=0

B
(M,q)
ψ λeq(r)478

and the simplified expression for R(M)A
(M,M)
Ψ −B(M,M)

Ψ from (1.14), we find479

(2.17)

Π̂Mr − r =
(

(R(M)A
(M,M)
ψ −B(M,M)

ψ )λeM (r)
)
· ψoM (ξ)

√
f0 −

∞∑
q=M+1

(
B

(M,q)
ψ λeq(r)

)
· ψoM (ξ)

√
f0

−
∞∑

q=M+1

(
λeq(r) · ψeq(ξ) + λoq(r) · ψoq(ξ)

)√
f0,

480

where B
(M,M)
ψ is as defined in Theorem 1.6. The matrices B(M,q)

ψ and the operator limq→∞B
(M,q)
ψ481

appearing above can be looked upon as restrictions of the operator limq→∞B
(M,q)
Ψ given in Theorem 2.4;482

thus all of their norms can be bounded by one. This provides483
(2.18)

‖Π̂Mr(t)− r(t)‖2L2(Ω×Rd)≤
(

Θ(M)
)2
‖λeM (r(t))‖2L2(Ω;Rne(M))+2

∑
β∈{e,o}

∞∑
q=M+1

‖λβq (r(t))‖2
L2(Ω;Rnβ(q))

≤
(

Θ(M)
)2
‖λeM (r(t))‖2L2(Ω;Rne(M))

+ 2
∑

β∈{e,o}

∞∑
q=M+1

(2q + d)2kβ

(2(M + 1) + d)2kβ ‖λ
β
q (r(t))‖2

L2(Ω;Rnβ(q))

≤
(

Θ(M)
)2
‖λeM (r(t))‖2L2(Ω;Rne(M))

+ 2
∑

β∈{e,o}

1
(2(M + 1) + d)2kβ ‖r

β(t)‖2
L2(Ω;Wkβ

H
(Rd))

,

484

where for the last inequality we use the definition485

‖re(t)‖2
L2(Ω;Wke

H
(Rd))=

∞∑
q=0

(2q + d)2ke‖λeq(r(t))‖2L2(Ω;Rno(q)).486

487

Above relation proves the bound for ‖Π̂Mr − r‖L2(Ω×Rd). To prove the convergence rate we use the last488
inequality in (2.18). The convergence rate of terms involving ‖re/o(t)‖

L2(Ω;Wke/o

H
(Rd)) follows trivially,489

and to obtain a convergence rate for the term involving Θ(M) we use the definition of R(M) to find490

(
Θ(M)

)2
‖λeM (r)‖2C0([0,T ];L2(Ω;Rne(M)))=‖R

(M)A
(M,M)
ψ −B(M,M)

ψ ‖22‖λeM (r)‖2C0([0,T ];L2(Ω;Rne(M)))491

(2.19)
≤
(
‖
(
A

(M,M−1)
Ψ

)−1
A

(M,M)
ψ ‖2+‖B(M,M)

ψ ‖2
)2
‖λeM (r)‖2C0([0,T ];L2(Ω;Rne(M)))

≤ C

M2ke−1 .

492

The last inequality in the above relation follows from the matrix norm bound given in Theorem 2.4 and493

12



2.6 Sharper Estimate

from the following estimate494
(2.20)

‖λeM (r(t))‖2L2(Ω;Rne(M))≤
∞∑

m=M
‖λem(r(t))‖2L2(Ω;Rne(M))≤

∞∑
m=M

(
2m+ d

2M + d

)2ke

‖λem(r(t))‖2L2(Ω;Rne(M))

≤ 1
(2M + d)2ke ‖r(t)‖

2
L2(Ω;Wke

H
(Rd)).

495

In a similar way, we prove the bound and the convergence rate for ‖ΠMr − Π̂Mr‖C0([0,T ];L2(Ω×Rd).496

Using the definition of ΠM and Π̂M from Theorem 2.1 we find497

Π̂Mr −ΠMr =
(

(R(M)A
(M,M)
ψ −B(M,M)

ψ )λeM (r)
)
· ψoM

√
f0 −

∞∑
q=M+1

(
B

(M,q)
ψ λeq(r)

)
· ψoM (ξ)

√
f0498

499

which implies500

‖Π̂Mr(t)−ΠMr(t)‖2L2(Ω×Rd)≤
(

Θ(M)
)2
‖λeM (r(t))‖2L2(Ω;Rne(M))+

∞∑
q=M+1

‖λeq(r(t))‖2L2(Ω;Rne(q)).501

502

Above inequality is the same as the first inequality in (2.18) but without any contribution from the odd503
moments of degree higher than M . Therefore, we get the bound for ‖Π̂Mr − ΠMr‖2L2(Ω×Rd) and its504
corresponding convergence rate from (2.18) and (2.19) by removing contribution from the odd moments505
of order higher than M .506

Using the result from Theorem 2.5 in the upper bound for EM (2.13) proves the error bound given507
in Theorem 2.2. To arrive at the convergence rate given in Theorem 2.2, first we split the bound for the508
closure error in Theorem 2.2 as509

(2.21)
√

(M + 1)‖λM+1(∂xif)‖C0([0,T ];L2(Ω;Rn(M+1)))≤
√

(M + 1)
(
‖λoM+1(∂xif)‖C0([0,T ];L2(Ω;Rno(M+1)))

+‖λeM+1(∂xif)‖C0([0,T ];L2(Ω;Rne(M+1)))
)
,

510

which results from acknowledging that λM+1(∂xif) =
(
λoM+1(∂xif)′, λeM+1(∂xif)′

)
. The bound for the511

individual moments of r ∈ L2(Ω;W k
H(Rd)) in terms of ‖r‖L2(Ω;Wk

H
(Rd)) (see (2.20)) implies that, with512

respect to M , the closure error decays as O(min{kex− 1
2 , k

o
x− 1

2}). The convergence rate for all the other513

terms in the error bound for EM follows from the fact that ‖A(M,M)
Ψ ‖2≤ C

√
M and from the convergence514

rate of the projection error.515

2.6 Sharper Estimate As already noted in [12], a bound for the individual moments of516
r ∈ L2(Ω;W k

H(Rd)) in terms of ‖r‖L2(Ω;Wk
H

(Rd)) is pessimistic; see the relation in (2.20). Therefore, one517
can make the error bound in Theorem 2.2 sharper by additionally assuming that the individual moments518
decay at a certain rate. The following result provides such a sharpened error bound, which is useful during519
numerical experiments because solutions to most numerical experiments have moments that decay at a520
certain rate [12, 26].521

Theorem 2.6. In addition to assumption 2, assume that522

‖λβm(f)‖C0([0,T ];L2(Ω;Rnβ ))<
C

mkβ+ 1
2
, ‖λβm(∂tf)‖C0([0,T ];L2(Ω;Rnβ ))<

C

mkβt + 1
2
,(2.22)523

‖λβm(∂xif)‖C0([0,T ];L2(Ω;Rnβ ))<
C

mkβx+ 1
2
, ∀ i ∈ {1, . . . , d},(2.23)524

525

where β ∈ {e, o}. Then, we can sharpen the convergence rate presented in Theorem 2.2 to526

ωshp = min
{
ke/o, k

e/o
t , ke/ox − 1

2

}
.(2.24)527

528

Proof. The result trivially follows from the above analysis by using the assumed moment decay rate529
(2.22) instead of the pessimistic bound in (2.20).530

Remark 8. Note that the Hermite-Sobolev index in W k
H(Rd), i.e. k, does not provide a decay rate531

for individual moments. However, if moments decay at a certain rate, i.e., if ‖λm(r)‖L2(Ω;Rn(m)))≤ C
ms532

then r ∈ L2(Ω;W k
H(Rd) for k < s− 1

2 . A detailed discussion can be found on page 12 of [12].533
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2 CONVERGENCE ANALYSIS

2.7 Uniform in Knudsen-number estimate Here we are interested in the small Knud-534
sen number regime and, in particular, we assume ‖Q‖> 0. For convenience we define the semi-norm535

|f |Q:= −〈f,Q(f)〉L2(Ω×Rd) ,(2.25)536537

which is well-defined because of assumption 1. We show that by treating the bound in (2.6) differently,538
we get a bound for ‖eM (t)‖L2(Ω×Rd) that scales with

√
‖Q‖, which (for small Knudsen numbers) is better539

than the scaling of ‖Q‖ considered in Theorem 2.2. Moreover, we derive a uniform-in-Knudsen-number540
bound for the part of the error that is orthogonal to the null-space of Q. Precisely, for any function f the541
semi-norm |f |Q scales with Kn−1 by definition and we derive a linear-in-Kn−1-number bound for |eM |Q.542
Recall that the Knudsen number results from the non-dimensionalisation of the kinetic equation and is543
explicitly given below in (3.2).544

From (2.6) we can infer545

(2.26) d

dt
‖eM (t)‖2L2(Ω×Rd)+|eM (t)|2Q ≤ (Ā1(t) + Ā3(t))||eM (t)||L2(Ω×Rd)+‖(−Q)

1
2 ‖Ā2(t)|eM (t)|Q546

with547

Ā1(t) := ‖ΠM∂tf(t)− Π̂M∂tf(t)‖L2(Ω×Rd),

Ā2(t) := ‖f(t)− Π̂Mf(t)‖L2(Ω×Rd),

Ā3(t) :=
∑
i

‖ΠM (ξi(∂xif(t)− Π̂M∂xif(t)))‖L2(Ω×Rd),

548

where we have used that Q is self-adjoint and negative semi-definite, so that −Q admits a square root.549
The discussion in equations (2.9) - (2.12) and Theorem 2.5 shows that for all t ∈ [0, T ] and i ∈ {1, 2, 3},550
we have551

(2.27) Āi(t) ≤ Ãi(T ) ≤ Ai(T ),552

such that we infer that553
554

(2.28) d

dt
‖eM (t)‖2L2(Ω×Rd)+

1
2 |eM (t)|2Q≤ (A1(T ) + ‖Q‖

1
2A2(T ) +A3(T ))||eM (t)||L2(Ω×Rd)+‖Q‖A2(T )2555

≤

√
2
(

(A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2||eM (t)||2

L2(Ω×Rd)+‖Q‖2A2(T )4
)
.556

557

Thus, for all t ∈ [0, T ], ‖eM (t)‖2L2(Ω×Rd) is bounded by z(t) where z solves558

(2.29) d

dt
z(t) =

√
2
(

(A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2z(t) + ‖Q‖2A2(T )4

)
559

with z(0) = ‖eM (0)‖2L2(Ω×Rd)= 0. The solution z satisfies560

561

(2.30)
√

(A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2z(t) + ‖Q‖2A2(T )4562

= 1√
2

(A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2t+ ‖Q‖A2(T )2.563

564

The above relation provides565
566

(2.31) (A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2z(t)567

≤ (A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))4t2 + ‖Q‖2A2(T )4,568569

which results in570

(2.32) sup
t∈[0,T ]

‖eM (t)‖2L2(Ω×Rd)≤ z(T ) ≤ (A1(T ) + ‖Q‖
1
2A2(T ) +A3(T ))2T 2 + ‖Q‖A2(T )2,571

14



2.8 Discussion

and572

(2.33) sup
t∈[0,T ]

‖eM (t)‖L2(Ω×Rd)≤
√
z(T ) ≤ (A1(T ) + ‖Q‖

1
2A2(T ) +A3(T ))T + ‖Q‖

1
2A2(T ) =: B(T ).573

It is worthwhile to note that the decay of B(T ) with respect to M is the same as the decay of the bound574
derived in Theorem 2.2. Moreover, both the above bound and the bound in Theorem 2.2 are linear in575
time. However, while the bound in Theorem 2.2 scaled (for small Knudsen numbers) with ‖Q‖, the bound576

in (2.33) scales with ‖Q‖
1
2 . In order to obtain a uniform-in-Knudsen bound for |eM (t)|Q, we return to577

(2.26) and integrate on [0, T ]. This leads to578

Theorem 2.7.

(2.34)

∫ T

0

1
2 |eM (t)|2Qdt ≤

∫ T

0

(
(A1(T ) +A3(T ))||eM (t)||L2(Ω×Rd)+‖Q‖A2(T )2) dt,

≤T ·
(
(A1(T ) +A3(T ))B(T ) + ‖Q‖A2(T )2) ,579

where |·|Q is as defined in (2.25), A1, A2 and A3 are as defined in (2.3a)-(2.3c), and B is as defined in580
(2.33).581

We note the following for the above result:582
1. the right hand side in (2.34) is a bound for the square of the error and it decays with twice the583

rate of the right hand side in Theorem 2.2;584
2. both sides of (2.34) scale with ‖Q‖, i.e., it provides a uniform-in-Knudsen-number bound. It585

must be noted that |eM (t)|Q is a semi-norm and it does not quantify the part of eM (t) that is in586
the null-space of Q.587

2.8 Discussion588

Improved Boundary Conditions: Model for the matrix R(M) (see (1.11)) is not unique and can589
be altered to enhance the accuracy of a moment approximation. For example, in [19] authors did such590
alteration for the R-13 moment equations using a data-driven approach. However, due to the absence591
of an error bound they did not analyse the correlation between the matrix R(M) and the R-13 moment592
approximation error.593

With the error bound of the projection error, we develop some insight into the extent to which the594
matrix R(M) influences the convergence rate of a moment approximation. Consider the bound for the595
projection error given in Theorem 2.5. We decompose this bound into two parts:596

ã =
∑

β∈{e,o}

1
(2(M + 1) + d)2kβ ‖r

β‖2
L2(Ω;Wkβ

H
(Rd))

and aΘ(M) = (Θ(M))2‖λeM (r)‖2L2(Ω;Rne(M)),597

598

where rβ ∈ L2(Ω;W kβ

H (Rd)) for β ∈ {e, o}, and for simplicity we consider ke = ko = k. Clearly, ã is599
independent of R(M) whereas aΘ(M) is dependent upon Θ(M) which then depends upon R(M).600

Trivially, ã is O(M−k) whereas, since Θ(M) is O(
√
M), ãΘ(M) is O(M−(k− 1

2 )). Thus if one can601
improve the model for R(M) such that Θ(M) decays faster than O(

√
M) then one can obtain a moment602

approximation which converges faster than the one presented here. Development of such a R(M) is beyond603
our present scope and will be discussed in detail elsewhere.604

Sub-optimality: The convergence analysis presented in this paper is sub-optimal. What we mean605
by optimality is twofold. Firstly, optimality means that the difference between the numerical and the606
exact solution decays with the same rate as the best approximation error of the exact solution. Secondly,607
optimality would require that no additional conditions are imposed on the exact solution. For the case at608
hand, the rate of convergence of the best approximation error is the Hermite-Sobolev index. Our analysis609
requires additional assumptions in the sense that not only the solution but also its derivatives need to610
have some Hermite-Sobolev regularity. This is a common feature of the analysis of numerical schemes611
for hyperbolic problems, see e.g. [6, 8, 10].612

Recalling the convergence rate presented in Theorem 2.2, we find613

ω = min
{
ke/o − 1

2 , k
e/o
t − 1

2 , k
e
x −

1
2 −

1
2 , k

o
x −

1
2

}
,(2.35)614

615
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3 EXAMPLES: LINEARISED BOLTZMANN AND BGK EQUATIONS

where ω is sub-optimal with respect to the different Hermite-Sobolev indices i.e., with respect to the616
different values of k. We elaborate on this particular sub-optimality and show (through an example) that617
it results from the velocity domain in the kinetic equation being unbounded (1.3). Loss of half an order618
in all indices is a result of the boundary stabilisation error (ΘM ), which grows with

√
M . This error619

gets multiplied by ‖A(M,M)
Ψ ‖2, which grows with

√
M , and results in a sub-optimality of an extra half620

appearing in the contribution from spatial derivatives; see the terms involving A3 in Theorem 2.2.621
Growth in ‖A(M,M)

Ψ ‖2, which also causes the growth in ΘM , is a result of the recursion relation of622
Hermite polynomials (1.5b) which states that the product of ξ with a M -th order Hermite polynomial623
equals a linear combination of a (M − 1)-th and a (M + 1)-th order Hermite polynomial but with factors624

which grow with
√
M . This growth results in the coefficients of A(M,M)

Ψ growing as O(
√
M), which625

leads to a growth in the norm of A(M,M)
Ψ . See appendix-B and appendix-C for details of the structure of626

A
(M,M)
Ψ and ΘM , respectively. The use of Hermite polynomials as basis functions (and thus the growth in627

‖A(M,M)
Ψ ‖2) is related to the velocity domain of the kinetic equation (1.3) being unbounded. For kinetic628

equations with a bounded velocity space, it might be possible to have basis functions such that ‖A(M,M)
Ψ ‖2629

does not grow with M , which would remove the additional sub-optimality in the Hermite-Sobolev indices630
of the spatial derivatives. As an example, consider the radiation transport equation for which the velocity631
space is a unit sphere and is thus bounded. A moment approximation can, therefore, be developed with632
the help of spherical harmonics and contrary to Hermite polynomials, the recursion relation of spherical633
harmonics is such that ‖A(M,M)

Ψ ‖2→ 1 as M →∞ [2, 10, 12]. Figure 1 shows a comparison between the634

norm of A(M,M)
Ψ for a S2 and a R3 velocity domain. Clearly, as M is increased, for a S2 velocity space635

‖A(M,M)
Ψ ‖2 approaches its limiting value of one whereas for a R3 velocity space ‖A(M,M)

Ψ ‖2 grows with636

O(
√
M). Thus for radiation transport, owing to the boundedness of ‖A(M,M)

Ψ ‖2 with M , we expect that637
one can entirely remove the second type of sub-optimality present in ω, i.e., one can get a convergence638
rate which is the same as the Hermite-Sobolev indices. Such a result would be in agreement with the639
error estimates presented in [10, 12].
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Figure 1. growth in ‖A
(M,M)
Ψ ‖2 with M for: (i) left, R3 velocity space and (ii) right, S2 velocity space.

640

3. Examples: Linearised Boltzmann and BGK equations641

We give examples of kinetic equations which fall into the framework presented above. In particular,642
we discuss the conditions under which the linearised Boltzmann and the linearised BGK equation fall643
into our framework.644

With f̄ : D → R+, (t, x, ξ) 7→ f̄(t, x, ξ), we denote the phase density function of a gas and we645
normalise f̄ such that the density (ρ̄), the mean flow velocity (v̄), and the temperature in energy units646
(θ̄) of the gas are given as: ρ̄ =

∫
Rd f̄dξ, ρ̄v̄ =

∫
Rd ξf̄dξ, ρ̄v̄ · v̄ + dρ̄θ̄ =

∫
Rd ξ · ξf̄dξ. For convenience, we647

non-dimensionalise all quantities with some reference density ρ0, temperature θ0 and length scale L. The648
evolution of f̄ is governed by the non-linear kinetic equation given as [24]649

(1, ξ) · ∇(t,x)f̄ = 1
Kn Q̄(f̄ , f̄),(3.1)650

651
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where Kn is the so-called Knudsen number which results from non-dimensionalisation, and Q̄ is a non-652
linear collision operator. We consider Q̄ to be either the Boltzmann or the BGK collision operator given653
as654

Boltzmann Operator: Q̄BE(f̄ , f̄) =
∫
Rd

∫
Sd−1
B(ξ − ξ∗, κ)

(
f(ξ

′
)f0(ξ

′

∗)− f(ξ)f0(ξ∗)
)
dκdξ∗;

BGK Operator: Q̄BGK(f̄ , f̄) = (f̄M − f̄).
655

Above, the velocities ξ′∗ and ξ
′ are post-collisional and result from the pre-collisional velocities ξ∗ and656

ξ. The collision kernel (B) depends on the interaction potential between the gas molecules and is non-657
negative by physical assumptions. Moreover, f̄M is a Maxwell-Boltzmann distribution function given658
as659

f̄M(ξ; ρ̄, v̄, θ̄) = ρ̄
d
√

2πθ̄
exp

[
− (ξ − v̄) · (ξ − v̄)

2θ̄

]
.660

661

For low Mach number flows, we assume f̄ to be a small perturbation of a ground state f0 =662
f̄M(ξ; ρ0, 0, θ0), i.e. f̄ = f0 + ε

√
f0f , where ε is some smallness parameter. Substituting the lineari-663

sation into the non-linear kinetic equation (3.1) and considering only O(ε) terms, we find the evolution664
equation for f665

(1, ξ) · ∇(t,x)f = 1
KnQ(f),(3.2)666

667

where Q is the linearisation of Q̄BE/BGK about f0 and is given as668

Linearised Boltzmann Operator: QBE(f̄) =
∫
Rd

∫
Sd−1
B(ξ − ξ∗, κ)

√
f0(ξ∗)f0(ξ)(

f(ξ′)√
f0(ξ′)

+ f(ξ′∗)√
f0(ξ′∗)

− f(ξ∗)√
f0(ξ∗)

− f(ξ)√
f0(ξ)

)
dκdξ∗;

Linearised BGK Operator: QBGK(f) = (fM − f̄).

669

Above, fM
√
f0 is a linearisation of f̄M about f0 and is given as670

fM(ξ; ρ, v, θ) :=
(
ρ+ v · ξ + θ

2 (ξ · ξ − 3)
)√

f0(ξ),(3.3)671
672

where ρ, v and θ are deviations of ρ̄, v̄ and θ̄ from their respective ground states.673
We discuss whether the collision operators QBE/BGK satisfy assumption 1. One can show that both674

QBE/BGK are negative semi-definite and self-adjoint, and that QBGK is bounded on L2(Rd); see [4] for675
details. Thus QBGK satisfies assumption 1. Below in remark 9 we summarise the assumptions that make676
QBE a bounded operator, which results in QBE satisfying assumption 1.677

As compared to the general kinetic equation (1.3), our example of the linearised Boltzmann (or the678
BGK) equation (3.2) has an additional factor of 1/Kn, which scales the collision operator. From the679
bound on ‖eM (t)‖L2(Ω×Rd) (in (2.33)) we find that such a scaling introduces a factor of 1/

√
Kn in front680

of the term ‖Q‖
1
2A2(T ) appearing in the error bound. An asymptotic analysis in terms of the Knudsen681

number can tell us how the error bound (or equivalently A2(T )) behaves as the Knudsen number is682
chosen smaller and smaller. Authors in [16] conduct such an analysis for initial value problems. For683
initial boundary value problems, an asymptotic analysis is available only for the simplified Broadwell684
equation [17]. We hope to cover the asymptotic study of the error bound in our future work. Although685
the bound on ‖eM‖L2(Ω×Rd) is sub-optimal in Kn, the bound on |eM |Q (given in (2.34)) is uniform in Kn.686
However, the semi-norm |eM |Q only quantifies the part of the error that is orthogonal to the null-space687
of Q, and it is unclear how to get a uniform in Kn bound for the error in the null-space of Q.688

Remark 9. Assume that we can split QBE as689

QBE(f)(ξ) = Q̃(f)(ξ)− v(ξ)f(ξ), v(ξ) =
∫
R3

∫
S2
B(ξ − ξ∗, κ)

√
f0(ξ∗)dκdξ∗,(3.4)690

691
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where v(ξ) ≥ 0 is the collision frequency and Q̃ is the remaining integral operator. The explicit form of Q̃692
can be found in [7]. We can bound Q on L2(Rd) by bounding Q̃ and v(ξ) on L2(Rd) and R+, respectively.693

We discuss assumptions that allow for the above splitting of Q, and for a bound on Q̃ and v(ξ).694
Details related to our assumptions can be found in [4, 7, 15]. Assuming an inverse power law potential,695
we express B(ξ − ξ∗, κ) as696

B(ξ − ξ∗, κ) = Ψ(|ξ − ξ∗|)b(cos θ), Ψ(|ξ − ξ∗|) = |ξ − ξ∗|γ , γ ∈ (−3, 1], cos θ = ξ − ξ∗
|ξ − ξ∗|

· κ.697
698

Assuming Grad’s angular cut-off results in θ 7→ b(cos θ) ∈ L1([0, π]). This makes v(ξ) well-defined and699
allows us to split Q as above (3.4). The operator Q̃ is bounded on L2(Rd) for γ ∈ (−3, 1]. Moreover, |v(ξ)|700
is bounded for all γ ∈ (−3, 0]. Therefore, QBE is bounded on L2(Rd) for inverse power law potentials701
with an angular cut-off and γ ∈ (−3, 0].702

4. Numerical Results703

Through numerical experiments, we validate the convergence rates presented in the earlier sections
by comparing the observed convergence rate with the predicted one. The solution to our numerical
experiment has moments that decay at a certain rate and hence we use the sharper estimate presented
in Theorem 2.6. With fref we denote the reference solution and we set fref = fMref with Mref being
sufficiently large. To compute the observed convergence rate, which we denote by ωobs, we first compute
the moment approximation error through EM (T ) = fref(T )−fM (T ). Then, we compute ωobs as the slope
of the linear curve that minimises the L2 distance to the curve (log(M), log(‖EM (T )‖L2(Ω×Rd))). The
predicted convergence rate, which we denote by ωpre, follows from Theorem 2.6 and is given as

ωpre = min
{
ke/o, k

e/o
t , ke/ox − 1

2

}
.

To compute the different values of k we first define the L2 norms of the moments of fref and its derivatives704

(4.1)
N (xi)
m := ‖λm(∂xifref)‖C0([0,T ];L2(Ω;Rn(m))), N (t)

m := ‖λm(∂tfref)‖C0([0,T ];L2(Ω;Rn(m))),

Nm := ‖λm(fref)‖C0([0,T ];L2(Ω;Rn(m))).
705

Let so represent the slope of the linear curve that has the minimum L2 distance to the curve706
(log(m), log(No

m)) with No
m being the same as Nm but with a dependency on only the odd moments.707

We approximate ko, and similarly the other k’s, by ko ≈ so − 1/2. Once values of k are known we can708
compute ωpre using the above expression. To quantify the discrepancy between the observed and the709
predicted convergence rates, we define710

∆ω = ωobs − ωpre.711712

For simplicity, we stick to a one dimensional physical and velocity space i.e., d = 1 and Ω = (0, 1).713
To discretize the 1D physical space we use a discontinuous galerkin (DG) discretization with first-order714
polynomials and 500 elements. For temporal discretization, we use a fourth-order explicit Runge-Kutta715
scheme. Our DG scheme is based upon a weak boundary implementation that preserves the stability716
of the moment approximation (1.12) on a spatially discrete level; see [27] for details. Note that in717
Theorem 2.2 we assumed Ω to be the half-plane but we can extend the analysis to Ω = (0, 1) through718
the following argument. The projection operator (Π̂M in Theorem 2.1) is defined with respect to the719
boundary conditions at x = 1 and a similar projection operator can also be constructed for the boundary720
conditions at x = 0. By taking a linear combination of the projection operation defined with respect721
to boundary conditions at x = 0 and x = 1, analogous results as those presented in Theorem 2.2 (and722
Theorem 2.6) can be obtained for Ω = (0, 1).723

As initial data we consider fI(x, ξ) = ρI(x)√
2π exp

(
− ξ

2

2

)
with ρI(x) := exp

[
− (x− 0.5)2 × 100

]
which724

corresponds to a Gaussian density profile with all the higher order moments being zero. As boundary725
data we consider vacuum at both the ends (x = 0 and x = 1) i.e., fin = 0. As final time we consider726
T = 0.3, and we choose Mref = 200.727

Figure 2 shows the decay in the L2 norm of the moments defined in (4.1), and the corresponding728
Hermite-Sobolev indices are given in Table 1. The moments of the solution and its derivatives have a729
Hermite-Sobolev index that is close to 1.5, which signifies that the reference solution is sufficiently regular730
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along the velocity space. As expected, the moment approximation error decreases as the value of M is731
increased; see Figure 3. However, contrary to the previous results [26], the convergence behaviour of the732
approximation error does not show any oscillations.733

Table 2 shows the observed and the predicted convergence rate. The observed approximation error734
converges with an order of 1.16 and is under-predicted by a value of 0.19. For the sake of validation,735
we also compute the convergence rates with the reference solution obtained through a discrete velocity736
method (DVM); see [18] for details of a DVM. With DVM as the reference, we obtain ωpre = 0.98,737
ωobs = 1.15 and ∆ω = ωobs − ωpre = 0.17 which is very similar to the results obtained with a moment738
reference solution Table 2.739

Quantity Hermite-Sobolev index (= Decay Rate-0.5)
Nm 1.8 (= ke = ko)
N

(t)
m 1.45 (= ket = kot )

N
(x)
m 1.47 (= kex = kox)

Table 1
Hermite-Sobolev indices corresponding to the time integrated magnitude of moments defined in (4.1).

Values of M ωpre ωobs ∆ω = ωobs − ωpre
Odd 0.97 1.16 0.19
Even 0.97 1.16 0.19

Table 2
Observed and predicted convergence rates.

Remark 10. Authors in [12] observed that moment decay rates computed using fref might show some740
artefacts for higher-order moments. To remove these artefacts we follow the methodology proposed in [12],741
i.e., we compute decay rates from only those values of Nm’s whose values computed through Mref and742
Mref − 1 differ by less than 3 percent.743

5. Conclusion744

Using a Galerkin type approach, under certain regularity assumptions on the solution, the global745
convergence of Grad’s Hermite approximation to a linear kinetic equation was proved. The speed of746
convergence was quantified by proving convergence rate which, as was expected, depends on the velocity747
space Sobolev regularity of the solution. The proposed convergence rate was found to be sub-optimal, in748
the sense that it is one order lower than the convergence rate of the best-approximation in the Galerkin749
spaces under consideration. Growth in the norm of the Jacobian corresponding to the flux of moment750
equations was found to be the reason for this sub-optimality. For validation of the proven convergence751
rate, a numerical experiment involving the linearised BGK-equation was conducted. For a moderately752
high Knudsen number (Kn = 0.1), the observed convergence rate matched with the predicted convergence753
rate with acceptable accuracy.754

6. Acknowledgements755

JG thanks the Baden-Wuerttemberg foundation for support via the project ’Numerical Methods for756
Multi-phase Flows with Strongly Varying Mach Numbers’. NS and MT thanks to the funding by the757
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project number:758
320021702/GRK2326, Project Name: Energy, Entropy, and Dissipative Dynamics (EDDy).759

Appendices760

A. Proof of Lemma 2.1761

By splitting the integral over ξ1, we find
〈
Ψo
M

√
f0, r

〉
L2(Rd) =

〈
Ψo
M

√
f0, r

〉
L2(R+×Rd−1) + 1

2G(r).762

Expressing r as r = re + ro and using
〈
Ψo
M

√
f0, r

e
〉
L2(Rd) = 0 in the previous expression, we find the763
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Figure 2. Plots depict the decay of the various quantities, defined in (4.1), obtained through a refined moment
approximation (M = 200). All plots are on a log-log scale.
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Figure 3. Decay of the approximation error, on a log-log scale, for different values of M .

desired result. To derive an expression equivalent to (2.16), we express ro and re as ro =
∑∞
m=1 λ

o
m(r) ·764

ψom
√
f0(ξ) and re =

∑∞
m=0 λ

e
m(r) · ψem

√
f0(ξ) respectively and replace these expansion in (2.16) to find765

ΛoM (r) = limq→∞B
(M,q)
Ψ Λeq(r) + G(r).766
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We consider limq→∞B
(M,q)
Ψ to be an operator defined over l2 in the sense of

( lim
q→∞

B
(M,q)
Ψ )x := ( lim

q→∞
B

(M,q)
Ψ x), ∀ x ∈ l2.

We now show that limq→∞B
(M,q)
Ψ is well defined on l2 which is equivalent to showing that the limit767

limq→∞B
(M,q)
Ψ x is well defined. Let x ∈ l2 and let xq ∈ Rq be a vector containing the first q elements768

of x. To extend xq by zeros, we additionally define x̄q ∈ l2 which has the same first q elements as x769
and whose all the other elements are zero. From the definition of B(M,q)

Ψ (i.e. Theorem 1.6) we find770

B
(M,q)
Ψ xq = 2

〈
Ψo
M

√
f0, g

q
〉
L2(R+×Rd−1) where gq = (Ψe

q · xq)
√
f0. Trivially, x̄q converges to x in l2. This771

implies that gq converges in L2(Rd). Then, by the continuity of the inner product of L2(R+ ×Rd−1), we772

have the convergence of B(M,q)
Ψ xq in RΞMo .773

B. Structure of A
(M,M)
Ψ774

We discuss in detail the structure of A(M,M)
Ψ which will be needed for the proof of Theorem 2.4. From775

the definition of A(M,M)
Ψ it is clear that it contains blocks of the integral776

D(k,l) =
〈
ψok(ξ)

√
f0, ξ1ψ

e
l (ξ)

′√
f0

〉
L2(Rd)

and D(M,M+1) = 0 where the second relation is a result of777

only considering basis functions upto degree M in our moment approximation (1.10a). Recursion of the778
Hermite polynomials (1.5b) provides ψok(ξ)ξ1 = d(k,k−1)ψek−1(ξ) + d(k,k+1)ψ̂ek+1, where ψ̂ek+1 is vector779
containing the first no(k) components of ψek+1. Moreover, matrices d(k,k−1), d(k,k+1) ∈ Rno(k)×no(k)780
are diagonal matrices containing the square root entries appearing in the recursion relation. Using781
orthogonality of basis functions, we express D(k,l) as782

D(k,l) =


d(k,k−1) ∫

Rd ψ
e
k−1(ξ)ψek−1(ξ)′f0dξ = d(k,k−1), l = k − 1

d(k,k+1) ∫
Rd ψ̂

e
k+1

(
ψek+1(ξ)

)′
f0dξ =

(
d(k,k+1) 0

)
, l = k + 1

0, else
(B.1)783

784

Note that D(k,k−1) ∈ Rno(k)×(ne(k−1)), where ne(k − 1) = no(k), whereas D(k,k+1) ∈ Rno(k)×ne(k+1).785

Since, ne(k) = no(k + 1), A(M,M)
Ψ consists of blocks of D(k,k−1) on its main diagonal and blocks of786

D(k,k+1) on its off diagonal with no entries below the main diagonal. From the recursion of Hermite787
polynomials (1.5b), we conclude788

d
(k,k−1)
ii =

√(
β

(1,o)
k

)
i
, d

(k,k+1)
ii =

√(
β

(1,o)
k

)
i
+ 1, i ∈ {1, . . . , no(k)}.(B.2)789

790

where β(1,o)
k is as defined below791

Definition B.1. Let βok ∈ Rno(k)×d be such that each row of βok contains the multi-index of the odd792

basis functions contained in ψok(ξ). Moreover, let β(1,o)
k ∈ Rno(k) represent the first column of βok.793

Note that all the entries in β
(1,o)
k are odd. Therefore, all the entries along the diagonal of d(k,k+1)794

and d(k,k−1) are square roots of even and odd numbers respectively. It can be shown that the number of795
times one appears in β

(1,o)
k is equal to k + 2. Thus, d(k,k−1) has the structure796

d(k,k−1) =
(
d̃(k,k−1) 0

0 Ik+2

)
(B.3)797

798

where d̃(k,k−1) ∈ R(no(k)−(k+2))×(no(k)−(k+2)) and Ik+2 is an identity matrix of size (k+2)×(k+2). From799
(B.1), (B.2) and (B.3) we can conclude that800

D(k,k−1) =
(
d̃(k,k−1) 0

0 Ik+2

)
, D(k,k+1) =

(
d(k,k+1), 0

)
.(B.4)801

802

The matrix A
(M,M−1)
Ψ , which can be constructed by ignoring the contribution from D(M−1,M) into803

A
(M,M)
Ψ , is upper triangular with blocks of D(k,k−1) along its diagonal. Since D(k,k−1) contains square804

roots of odd numbers along its diagonal, which are all non-zero, the invertibility of A(M,M−1)
Ψ follows.805
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C NORMS OF MATRICES AND OPERATORS

C. Norms of Matrices and Operators806

We will need the result807

Lemma C.1. Let A ∈ Rn×n, n ≥ 1, be given by Aij =
√

2i− 1δij +
√

2iδ(i+1)j. Then the solution808
x ∈ Rn to the linear system809

Aijxj = δin(C.1)810811

is such that ‖x‖l2= 1.812

Proof. For n = 1, the result is trivial and so we consider the n > 1 case. From the first n − 1813
equations of the linear system (C.1) it follows xi

√
2i− 1 + xi+1

√
2i = 0, i ∈ {1, 2, . . . n− 1}, with which814

we can express any xp (p ≥ 2) in terms of x1 as815

xp = (−1)p−1
p−1∏
k=1

√
2k − 1

2k x1 = (−1)p−1

√
(2p− 3)! !
(2p− 2)! !x1, p ∈ {2, . . . n}.(C.2)816

817

Thus818

‖x‖2l2= x2
1

(
1 +

n∑
p=2

(2p− 3)! !
(2p− 2)! !

)
= x2

1

n−1∑
p=0

1
2pp! .(C.3)819

820

From the last equation in (C.1) and using (C.2) we have xn = 1/
√

2n− 1 which implies821
x1 = (−1)n−1

√
(2n− 2)! ! /(2n− 1)! !. Using the expression for x1 in (C.3), we find822

‖x‖2l2= (2n− 2)! !
(2n− 1)! !

n−1∑
p=0

1
2pp! .823

824

Finally, induction provides
∑n−1
p=0 1/(2pp! ) = (2n− 1)! ! /(2n− 2)! ! which implies ‖x‖2l2= 1.825

(i) Norm of limq→∞B
(M,q)
Ψ : Let L = limq→∞B

(M,q)
Ψ which is well-defined on l2 due to Theo-826

rem 2.3. Define y ∈ RΞMo as y = Lx = 2 〈Ψo
Mf0, r〉K+ where r =

∑∞
m=0 xm · ψemf0, x =827 (

x
′

0, x
′

1, . . . , x
′

k, . . .
)′

and xk ∈ Rne(k). Functions
√

2ψei f0 are orthonormal under 〈., .〉K+ . This828

implies ‖r‖2K+= 1
2‖x‖

2
l2 . Orthogonal projection of r onto {

√
2ψomf0}m≤M can be given as829

Pr =
∑M
m=1 ym · ψomf0 where y =

(
y
′

1, y
′

2, . . . , y
′

M

)′
and yk ∈ Rno(k). Therefore, it holds830

‖Pr‖K+≤ ‖r‖K+ . Since ‖Pr‖2K+= ‖y‖2l2/2 and ‖r‖2K+= ‖x‖2l2/2, we obtain ‖y‖2l2≤ ‖x‖2l2 which831
provides ‖L‖≤ 1.832

(ii) Norm of A(M,M)
Ψ : Let A = A

(M,M)
Ψ

(
A

(M,M)
Ψ

)′
. Since every row of A(M,M)

Ψ contains two entries,833

one on the main diagonal and one on the off diagonal (see appendix-B), every row of A will contain834

a maximum of three entries. Since the maximum magnitude of entries in A(M,M)
Ψ is O(

√
M), the835

maximum magnitude of the entries, in A, will be O(M). The Gerschgorin’s circle theorem then836

implies that the maximum eigenvalue of A will be O(M) which implies ‖A(M,M)
Ψ ‖2≤ C

√
M .837

(iii) Norm of ‖
(
A

(M,M−1)
Ψ

)−1
A

(M,M)
ψ ‖2 : In the coming discussion we will assume M to be even;838

for M being odd, the proof follows along similar lines and will not be discussed for brevity.839
From the definition of A(M,M)

ψ it is clear that it only has a contribution from D(M−1,M) ∈840

Rno(M−1)×ne(M), with D(M−1,M) as defined in (B.4). Let X ∈ RΞMo ×no(M−1) represent those841

columns of
(
A

(M,M−1)
Ψ

)−1
which get multiplied with D(M−1,M) appearing in A

(M,M)
ψ . As a842

result ‖
(
A

(M,M−1)
Ψ

)−1
A

(M,M)
ψ ‖2= ‖XD(M−1,M)‖2≤ ‖X‖2‖D(M−1,M)‖2. From (B.2) it follows843

that ‖D(M−1,M)‖2≤ C
√
M . We show that X is unitary which proves our claim.844

Let x(ω) denote the ω-th column of X with ω ∈ {1, . . . , no(M − 1)}. We decompose x(ω) as845

x(ω) =
((

x
(ω)
ne(0)

)′
,
(
x

(ω)
ne(1)

)′
, . . . ,

(
x

(ω)
ne(M−1)

)′)
where x(ω)

ne(q) ∈ Rne(q). Different values of x(ω),846
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for different values of ω, can be found by solving the system of equations (which results from847

A
(M,M−1)
Ψ

(
A

(M,M−1)
Ψ

)−1
= I)848

D(k,k−1)x
(ω)
ne(k−1) +D(k,k+1)x

(ω)
ne(k+1) = 0 D(M,M−1)x

(ω)
ne(M−1) = 0,(C.4)849

D(M−1,M−2)x
(ω)
ne(M−2) = Ino(M−1)

ω ,(C.5)850851

where Ino(M−1)
ω is a diagonal matrix of size no(M −1)×no(M −1) such that

(
I
no(M−1)
ω

)
ii

= δiω852

and D(k,k−1) (and D(k,k+1)) are as defined in (B.4). From (C.4) we conclude x(ω)
ne(M−1) = 0 which853

implies x(ω)
ne(M−(2q−1)) = 0, ∀q ∈ {1, . . . M2 }. We express the set of remaining equations as854

(C.6)
D(k,k−1)x

(ω)
ne(k−1) +D(k,k+1)x

(ω)
ne(k+1) = 0, ∀ k ∈ {1, 3, . . . ,M − 3}

D(M−1,M−2)x
(ω)
ne(M−2) = Ino(M−1)

ω

855

Orthogonality of solutions to (C.6) is clear from the structure of the linear system itself. There-856
fore, to prove our claim we need to show that857

‖x(ω)‖l2= 1 ∀ ω ∈ {1, . . . no(M − 1)},(C.7)858859

for which we will claim that solving (C.6) for a given ω is equivalent to solving a system of860
the type (C.1); the result will then follow from Theorem C.1. From the entries of d(k,k−1) and861
d(k,k+1) defined in (B.2), it follows that the system in (C.6) is equivalent to862



1
√

2 0 0 . . . . . .

0
√

3
√

4 0 . . . . . .

0 0
. . . . . . 0 . . .

0 0 0 . . .
√

(β(1,o)
M−1)j − 2

√
(β(1,o)
M−1)j − 1

0 0 0 . . . . . .
√

(β(1,o)
M−1)j





(
x

(ω)
ne(M−2q)

)
j(

x
(ω)
ne(M−2(q−1))

)
j

...(
x

(ω)
ne(M−2)

)
j


=



0
0
0
0
...

δj,ω



(C.8)

863

864

where β(1,o)
k is as defined in Theorem B.1, q =

((
β

(1,o)
M−1

)
j

+ 1
)
/2 and for every ω,865

j ∈ {1, . . . , no(M − 1)}. For j = ω, the system in (C.8) is the same as (C.1) and hence (C.7)866
follows.867
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