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Abstract1

Previous works have developed boundary conditions that lead to the L2-boundedness of2

solutions to the linearised moment equations. Here we present a spatial discretization that3

preserves the L2-stability by recovering integration-by-parts over the discretized domain and4

by imposing boundary conditions using a simultaneous-approximation-term (SAT). We de-5

velop three different forms of the SAT using: (i) characteristic splitting of moment equation’s6

boundary conditions; (ii) decoupling of moments in moment equations; and (iii) character-7

istic splitting of Boltzmann equation’s boundary conditions. We discuss how the first two8

forms differ in terms of their usage and implementation. We show that the third form is9

equivalent to using an upwind kinetic numerical flux along the boundary, and we argue that10

even though it provides stability, it prescribes the incorrect number of boundary conditions.11

Using benchmark problems, we compare the accuracy of moment solutions computed using12

different SATs. Our numerical experiments also provide new insights into the convergence13

of moment approximations to the Boltzmann equation’s solution.14

1. Introduction15

The Boltzmann equation (BE) governs the evolution of a phase density functional and accurately16

describes gas flows for all thermodynamic regimes. Although Monte-Carlo methods provide a17

flexible framework for solving the BE [5], they suffer from sampling noise, motivating one to look18

for deterministic Galerkin methods that approximate BE’s solution in a finite-dimensional space19

[9, 14, 30, 43]. In the present work, we also use a Galerkin method where along the velocity20

domain we approximate the solution in the span of Grad’s Hermite polynomials, and along the21

spatial domain we use a finite element approximation [14].22

For initial boundary value problems (IBVPs), a Hermite expansion requires boundary con-23

ditions. These boundary conditions first appeared in Grad’s work [14] however, at least for24

linearised moment equations, they lead to L2-instabilities [32]; instabilities prohibit an a-priori25

convergence analysis and can lead to inaccurate results [29, 45]. For the first time in [37] authors26

proposed boundary conditions for the regularised-13 (R13) moment equations that lead to its27

L2-stability. Furthermore, authors in [29, 36] showed enhanced physical accuracy of these stable28

R13 equations and recently [32, 33] authors developed L2-stable Grad’s moment approximations29

of (formally) arbitrary order. Extensions to multi-physics problems can also be found in [4, 36].30

All of the above works focused on ensuring a L2-bound for the solution on a spatially continu-31

ous level. In the present work, we develop a finite element (FE) approximation that preserves the32

L2-stability of a moment approximations on a spatially discrete level. Such a FE approximation33

requires an appropriate discretization of boundary conditions, and the present literature offers34
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1 INTRODUCTION

two possible ways to do so. Either one can include boundary conditions in the solution space1

of the FE approximation, or one can include boundary conditions into the variational formula-2

tion and approximate them along with the solution through a simultaneous-approximation-term3

(SAT) [10, 25, 27, 39]. For hyperbolic equations, a SAT offers comparatively easy implementa-4

tion and leads to provably stable numerical schemes when coupled with a spatial discretization5

that recovers a discrete analogue of integration-by-parts. See the review papers [12, 40] for a6

comprehensive survey of such stable schemes. Since linearised Grad’s moment equations are7

hyperbolic, we include boundary conditions in a FE approximation through a SAT. To recover8

integration-by-parts on a spatially discrete level, we assume the exact integration of volume inte-9

grals involving divergences. Since we use linearised moment equations, we justify the assumption10

of exact integration with the use of a sufficient number of quadrature points.11

A SAT requires a well-defined penalty matrix, and we present the following three different12

variants of this penalty matrix: (i) characteristic penalty matrix that uses characteristic splitting13

of moment equation’s boundary conditions; (ii) odd penalty matrix that uses the decoupling of14

moments in moment equations; and (iii) kinetic penalty matrix that uses the characteristic split-15

ting of BE’s boundary conditions. Authors in [25] proposed the first form of the penalty matrix16

whereas the other two forms are a novelty of the present work. Using benchmark problems, we17

compare the physical accuracy of solutions computed using different SATs. To quantify physical18

accuracy, we use the L2-error in macroscopic quantities, and we perform all our experiments19

on a bounded two-dimensional domain. Although some works [9, 28] have studied the physical20

accuracy of moment approximations on two-dimensional domains, ours is the first that studies21

convergence by comparing the moment solution to the discrete velocity solution [24].22

For solutions that are continuously differentiable in space and time, we show that a kinetic23

penalty matrix imposes the incorrect number of boundary conditions that leads to non-physical24

oscillations in numerical experiments. Given our negative results for a kinetic penalty matrix,25

our motivation behind discussing it is two-fold. Firstly, it is intuitive to use an upwind kinetic26

numerical flux to prescribe boundary conditions for moment equations and for that reason,27

several previous works have proposed it [1, 22, 23, 41]. Here we show that using an upwind28

kinetic flux is equivalent to using a SAT with a kinetic penalty matrix. Secondly, as to our29

knowledge, in the context of well-posedness, such a boundary discretization is not analysed30

before. Assuming continuous differentiability of the solution, we present such an analysis and31

show that the number of boundary conditions prescribed by an upwind kinetic flux is inconsistent32

with the moment equations.33

The type of spatial discretization one uses is problem-dependent. Owing to a square domain34

discretized with a Cartesian grid, and smooth solutions, we use a continuous Galerkin (CG) based35

spatial discretization. For problems with discontinuous solutions, one would use a discontinuous36

Galerkin (DG) framework. Moreover, for spatial domains with more than two dimensions, both37

CG and DG discretizations, when coupled with a velocity domain discretization, might lead to38

a very large number of degrees of freedom resulting in an unaffordable computation. See [44] for39

an explicit expression for the degrees of freedom resulting from a Grad’s Hermite expansion. In40

such a case, one can reduce the number of degrees of freedom, while retaining accuracy, through41

an adaptive velocity domain discretization. For adaptivity and coupling of moment equations,42

DG provides greater flexibility as compared to CG [1]. Note that the treatment of boundary43

conditions in a DG framework (or any other SBP type scheme) is possible through the same44

SAT we develop here.45

We first develop our FE approximation for a general linear first-order IBVP that has as-46

sumptions upon its structure. We then show that the linearised Grad’s moment equations, P347

equations of radiation transport, and the two-dimensional wave equation, are included in our48

general framework. Work done in [17, 36] indicates that moment equations resulting from binary49

gas mixtures and evaporation are also a special case of our general framework but a rigorous50
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investigation is needed.1

2. General Framework2

We consider a general linear first-order IBVP, and using an odd and a characteristic penalty3

matrix, we formulate a stable semi-discrete FE approximation for the same. Later, we discuss4

particular IBVPs that are special cases of our general formulation. The FE approximation5

involving kinetic penalty matrix requires an introduction to the BE, and we discuss it later.6

A general first-order IBVP is given as7

∂tα+

d∑
i=1

A(i)∂xiα = Pα, in Ω× [0, T ], α(t = 0) = αI , on Ω, Bα = G, on ∂Ω× [0, T ], (1)8

where Ω ⊂ Rd (1 ≤ d ≤ 3) is bounded and polyhedral, and x ∈ Rd denotes a spatial coordinate.9

We denote the solution vector by α(x, t) ∈ Rn, and A(i) ∈ Rn×n is a constant matrix. The10

constant matrix P ∈ Rn×n scales the reaction term, and the initial data is given by αI(x) ∈ Rn.11

The matrix B(x) ∈ Rp×n prescribes boundary conditions, and G(x, t) ∈ Rp is a known solution12

independent vector containing boundary inhomogeneities. For simplicity, we assume that B is13

x-dependent, including t-dependence at the expense of some technical complications is trivial.14

The value of p governs the total number of prescribed boundary conditions, and we specify it15

later.16

For stability analysis, we make the following regularity assumption on the initial and bound-17

ary data.18

Assumption 1. We assume that αI ∈ L2(Ω;Rn) and G ∈ L2(∂Ω× [0, T ];Rp).19

Assumption 2. Assumptions on the different matrices appearing in the IBVP are as follows.20

1. We assume that all the matrices A(i) are symmetric i.e.,21

A(i) =
(
A(i)

)T
∀ i ∈ {1, . . . , d}, (2)22

23

where (.)T denotes the transpose of a matrix.24

2. We assume that A(1) has the structure25

A(1) =

(
0p×p Ã(
Ã
)T

0q×q

)
, (3)26

27

where Ã ∈ Rp×q, p ≤ q and p + q = n. Note that this p is the same p that defines the28

number of rows of B, reason for this similarity will be clear later. With 0q×q (and 0p×p)29

we denote a zero matrix of size q × q (and p× p).30

3. We assume that Ã has full rank31

rank
(
Ã
)

= p. (4)32
33

Since by previous assumption we have p ≤ q, the above condition is equivalent to all the34

rows of Ã begin linearly independent.35
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2 GENERAL FRAMEWORK

4. Let x ∈ ∂Ω, and let n(x) ∈ Rd be a unit vector that is perpendicular to ∂Ω at the point x.1

We assume that n(x) points out of the domain Ω. Using n(x) we define the matrix2

An :=

d∑
i=1

A(i)ni(x). (5)3

We assume that there exists an orthogonal matrix ωn (dependent on the unit normal n(x))4

such that An is a similarity transform of A(1) under ωn5

An = (ωn)TA(1)ωn, ∀ n(x) ∈ Rd. (6)6
7

In the context of moment equations, the above property is referred to as rotational invari-8

ance [45].9

5. We assume that the matrix P is negative semi-definite10

αTPα ≤ 0, ∀ α ∈ Rn.11

For convenience, we define the following.12

Definition 2.1. With EV (A)− we represent the total number of negative eigenvalues of a matrix13

A ∈ Rn×n.14

Using assumption 2, we can show that [33]15

EV
(
A(1)

)
−

= EV (An)− = p, ∀ n(x) ∈ Rd. (7)16

The above relation is equivalent to the claim that at every point along the boundary ∂Ω, the17

system in (1) has p number of incoming characteristics. Therefore, we can prescribe a set of18

boundary conditions to only the incoming characteristics through a boundary matrix (B) of the19

form [32, 33]20

B(x) = B(1)(x)ωn where B(1)(x) =
(
Ip×p,−R(x)Ã

)
, ∀ x ∈ ∂Ω. (8)21

22

Above, R(x) ∈ Rp×p is s.p.d for all x ∈ ∂Ω, and Ip×p is an identity matrix of size p × p. Here23

and elsewhere, s.p.d is an abbreviation for a symmetric positive definite matrix. With the above24

set of boundary conditions, we arrive at the following bound for the IBVP’s solution [29, 32]25

‖α(·, T )‖2L2(Ω;Rn)≤ C(T, αI ,G), (9)26
27

where C(T, αI ,G) ∈ R+ is (T, αI ,G)-dependent1. In the following sections we develop a semi-28

discrete FE approximation that preserves the above stability estimate on a spatially discrete29

level. Note that the specific form of the boundary matrix (i.e., the one given in (8)) is not30

necessary for the above bound, indeed the boundary matrix resulting from the kinetic penalty31

matrix (discussed later) will not have the form in (8). However, to prescribe boundary conditions32

to the incoming characteristics, if one assumes that B(x) = (Ip×p, L(x)), with L(x) ∈ Rp×q, then33

the above abound is attained if and only if L(x) = −R(x)Ã. The details of this result are given34

in [32].35

1For further discussion, C(T, αI ,G) ∈ R+ will denote a (T, αI ,G)-dependent constant, new factors might be
included in C(T, αI ,G) without a change in notation
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2.1 Finite Element Approximation: Boundary Discretization

Remark 1. Explicit form of the matrix R(x) depends upon the physical system that the IBVP1

models. For example, consider the wave equation (see example 2.1) for which R(x) can depend2

on the reflection coefficient of a surface. Similarly for moment equations, in case of a gas-wall3

interaction, R(x) depends upon the wall’s roughness [29, 33].4

Remark 2. Since in (2) we assume that A(i) is symmetric, the system in (1) is symmetric5

hyperbolic and the bound in (9) signifies its entropy stability. See [19] for a discussion on6

symmetric hyperbolic equations, and their entropy functions.7

Remark 3. For linear IBVPs, the fact that the boundary matrix in (8) prescribes boundary8

conditions to only the incoming characteristics and that it leads to the bound in (9), is equivalent9

to the IBVP being well-posedness[18, 21, 26].10

2.1 Finite Element Approximation: Boundary Discretization Let Ωh = {κ}11

denote a shape regular discretization of Ω. We assume that elements of Ωh intersect only at sets12

of measure zero in Rd and that the intersection between two elements is the face of both the13

elements. Moreover, we assume that each element κ is a bijective image of a reference element14

κ̂ i.e., κ = Fκ(κ̂) with Fκ being a κ-dependent bijective mapping. The reference element (κ̂)15

could either be a unit simplex or a unit hypercube in Rd. With hκ we represent the diameter16

of an element κ and we parametrise the triangulation through one representative diameter17

h = max
κ∈Ωh

(hκ). Using Ωh, we define our FE approximation space of continuous functions as18

Vh := {v ∈
[
C0(Ωh)

]n
: v|κ ◦Fκ ∈ [P1(κ̂)]n , ∀ κ ∈ Ωh}, (10)19

20

where P1(κ̂) is a space of linear (or bilinear) polynomials defined over κ̂. To approximate our21

IBVP (1), we project it onto Vh that provides a FE approximation given as22

find αh(t) ∈ Vh such that∫
Ωh

φT∂tαh(t)dx+

d∑
i=1

∫
Ωh

φTA(i)∂xiαh(t)dx

=

∫
Ωh

φTPαh(t)dx+

∮
∂Ωh

φTΣ (Bαh(t)− G(t)) ds, ∀ φ ∈ Vh, ∀ t ∈ [0, T ]∫
Ωh

φTαh(t = 0)dx =

∫
Ωh

φTαIdx, ∀ φ ∈ Vh.

(11)23

Above, dependencies on x are suppressed for brevity, and Σ ∈ Rn×p is a penalty matrix that we24

define later. For further discussion we assume that the solution to the above variational form is25

continuously differentiable in time. We summarise our assumption in the following.26

Assumption 3. We assume that αh(x, ·) ∈
[
C1([0, T ])

]n
for all x ∈ Ωh.27

Rather than including boundary conditions in the approximation space Vh, we included them28

in the variational form through the underlined term. Since the underlined term approximates29

the boundary conditions simultaneously with the solution, it is referred to as the simultaneous-30

approximation-term (SAT) [10, 12]. The SAT leads to a numerical solution that might not31

satisfy the boundary conditions exactly or so-called strongly, and therefore such a boundary32

implementation is referred to as the weak boundary implementation [40]. Through the penalty33

matrix Σ, the SAT penalizes the inability of the numerical solution in strongly satisfying the34

boundary conditions, and at least formally one expects the deviation Bαh − G to tend to zero35

(in some norm) as the grid is refined [40, 46].36
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It is favourable to have a FE approximation that is L2-stable and mimics the bound on the1

exact solution (9). Precisely speaking, we want the FE solution to satisfy2

‖αh(·, T )‖2L2(Ω;Rn)≤ C(T, αhI ,Gh), (12)3
4

where αhI and Gh are some numerical approximations to the initial and boundary data, respec-5

tively. For the above bound we require integration-by-parts and an appropriately defined penalty6

matrix [10, 20]. Integration-by-parts follows by assuming that the integrals
∫

Ωh
φTA(i)∂xiαh(t)dx7

and
∫

Ωh
(∂xiφ)TA(i)αh(t)dx are exact, that provides8

d∑
i=1

∫
Ωh

(
φTA(i)∂xiαh(t) + (∂xiφ)TA(i)αh(t)

)
dx =

∮
∂Ωh

φTAnαh(t)ds. (13)9

All the above terms are polynomials in x, thus a use of sufficient number of quadrature points10

ensures exact integration.11

Apart from integration-by-parts, for stability, we need to define the penalty matrix Σ. Below12

we introduce two different penalty matrices, both of which lead to stability. The characteristic13

penalty matrix is well-known in the literature (see [25, 45] and references therein) and results14

from expressing the boundary conditions in terms of characteristic variables. The other penalty15

matrix is motivated by the structure of A(1) given in (3), and we label it as the odd penalty16

matrix Σo. The terminology will be clear when we introduce moment equations.17

Characteristic Penalty Matrix: Since An (given in (6)) is symmetric, we decompose it as18

An = Xnλn (Xn)T where Xn is an orthogonal matrix containing all the eigenvectors of An, and19

λn is a diagonal matrix containing all the eigenvalues of An. Similar to Xn, let X−n be a matrix20

that collects all the eigenvectors of An corresponding to negative eigenvalues. Moreover, let |λn|21

be the same as λn but with all the diagonal entries of λn replaced by their absolute values. Using22

|λn|, we define |An| as |An|= Xn|λn|(Xn)T and using |An|, we give the characteristic penalty23

matrix as24

Σc(x) =
1

2
(An − |An|)X−n

(
B(x)X−n

)−1
, ∀ x ∈ ∂Ω. (14)25

26

Replacing Σ by Σc in the FE formulation (11) and using integration-by-parts (13), one can27

shown that the FE formulation is stable (12). Detailed derivation of Σc and its stability proof28

can be found in [25].29

Using the rotational invariance of the matrix An given (6), we simplify the above expression30

for Σc. We collect all eigenvectors of A(1) in X1, and we collect all eigenvectors of A(1) corre-31

sponding to negative eigenvalues in X−1 . Rotational invariance of An implies that Xn = (ωn)TX132

and X−n = (ωn)TX−1 . Using these relations, the explicit expression for the matrix B(x) from (8)33

and the rotational invariance property of An, we arrive at a simpler expression for Σc34

Σc(x) =
1

2
(ωn)T

(
A(1) − |A(1)|

)
X−1

(
B(1)(x)X−1

)−1
, ∀ x ∈ ∂Ω. (15)35

36

As compared to (14), the above expression for Σc is simpler because it requires an eigenvalue37

decomposition of the matrix A(1), which is independent of the unit normal n(x). In all our38

numerical experiments, we use the above form on Σc.39

Odd Penalty Matrix: While formulating the characteristic penalty matrix, we neither exploit40

the structure of the matrix A(1) given in (3) nor of B(x) given in (8). Below we present the41

odd penalty matrix that exploits the structure of both of these matrices and as a result, has42
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2.2 Discussion

a simpler expression than Σc. We first give the odd penalty matrix and later elaborate on its1

differences from a characteristic one. The odd penalty matrix is given as2

Σo(x) = (ωn)T

(
0p×p(
Ã
)T

)
, ∀ x ∈ ∂Ω, (16)3

4

where Ã ∈ Rp×q is defined in (3). Following result shows that with Σ replaced by Σo, the5

semi-discrete FE approximation in (11) is stable. The result relies on using the s.p.d nature of6

the matrix R(x) appearing (8), and the structure of A(1) given in (3).7

Lemma 2.1. With Σ replaced by Σo, the semi-discrete FE approximation (11) satisfies the8

stability estimate9

‖αh(·, T )‖2L2(Ω;Rn)≤ C(T, αhI ,Gh).10
11

Proof. See appendix A.12

2.2 Discussion Based upon different criterion, we compare the two penalty matrices Σc13

and Σo.14

Generality of usage: Proving stability with characteristic penalty matrix necessarily requires:15

(i) Jacobians (A(i)) that are simultaneously symmetrizable; (ii) boundary conditions that pre-16

scribe a value to the incoming characteristics; and (iii) a bounded solution to the IBVP. How-17

ever, apart from these three requirements, it does not require any other assumption made on18

the matrices A(i), neither does it require the specific form of the boundary matrix in (8). Being19

independent of these assumptions, one can use a characteristic penalty matrix for a broad range20

of linear IBVPs. Note that as mentioned in remark 3, requirement (ii) and (iii) is equivalent to21

the IBVP being well-posed.22

Both the explicit form of the odd penalty matrix and the stability proof (given in lemma 2.1)23

rely on the structure of the matrix A(i) (given in (3), (6) and (4)), and of the boundary matrix24

given in (8). This restricts the use of an odd penalty matrix to systems that satisfy these25

assumptions. Examples of such systems are the wave equation (see example 2.1), and the26

linearised Grad’s moment equations (see section 3). Presently, the PN equations of radiation27

transport (see [6] for details of PN equations) do not have boundary conditions that lead to28

a bounded solution, neither is it proven that PN equations satisfy assumption 2. However,29

computationally we observe that at least till N = 100, PN equations satisfy assumption 2 and30

appendix B shows this for N = 3. Based on this observation we speculate that for an arbitrary31

value of N ∈ N, the PN equations should satisfy assumption 2. In such a case, boundary32

conditions of the form (8) should lead to stability of the PN equations allowing one to use an33

odd penalty matrix. Note that even for N > 100 one can check that PN equations satisfy34

assumption 2 but it does not prove the same for any N ∈ N. As mentioned in the introduction,35

the work in [17, 36] indicates that an odd penalty matrix can also be used for linearised moment36

equations resulting from binary gas mixtures and multi-phase flows.37

Implementation overhead: The shape of a domain’s boundary ∂Ω is encoded in the normal38

vector n(x). Therefore, the dependence of both the penalty matrices on the shape of ∂Ω is clear39

from their definitions itself. However, only the characteristic penalty matrix depends upon the40

boundary matrix B(x) which results in a major difference between the implementation overhead41

of the two penalty matrices.42

As an example consider gas-wall interaction where the boundary matrix B depends upon43

the wall’s roughness [33]. If the wall’s roughness varies along the boundary then the inverse44
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2 GENERAL FRAMEWORK

appearing in the characteristic penalty matrix (i.e. (B(x)X−n )−1 in (15)) should be computed1

separately for every different boundary quadrature point whereas, an odd penalty matrix does2

not require such a computation. A similar situation can arise in multi-physics problems. For3

example consider gas confined in a square domain with two boundary faces being solid walls,4

one face being an evaporation type boundary (see [36] for details), and the last one being an5

inflow/outflow type boundary. Again, the characteristic penalty matrix requires the computation6

of a separate inverse for every different boundary face. To summarise, stronger the variation of7

B along the boundary more is the implementation overhead of a characteristic penalty matrix.8

Moreover, the implementation overhead increases for time-dependent boundary matrices.9

In addition to being dependent upon the boundary matrix, the characteristic penalty matrix10

requires an eigenvalue decomposition whereas the odd penalty does not. However, for the11

simplified characteristic penalty matrix (15), eigenvalue decomposition is required only at the12

beginning of any computation.13

Convergence behaviour and Physical accuracy: It is important to compare the discretiza-14

tion error generated by the two different penalty matrices (Σc and Σo) on the same grid (Ωh). A15

comparison through a rigorous a-priori convergence analysis is beyond the scope of the present16

article. However, later we will make this comparison through numerical experiments.17

Moment equations form a hierarchy of physical models that approximate the Boltzmann18

equation [2, 45]. Later through numerical experiments, we will compare the physical accuracy19

of moment solutions computed with the two different penalty matrices.20

In the following, we consider an example that presents the above discussed penalty matrices21

for the 2D wave equation.22

Example 2.1. For a 2D wave equation, the matrices appearing in (1) are given as23

A(1) =

 0 1 0
1 0 0
0 0 0

 , A(2) =

 0 0 1
0 0 0
1 0 0

 , P = 03×3. (17)24

25

Both the above matrices are symmetric, A(1) satisfies the assumption in (3) with Ã = (1, 0), and26

the values for p and q are 1 and 2, respectively. Moreover, the matrix An given in (5) satisfies27

An = (ωn)TA(1)ωn with ωn =

 1 0 0
0 n1(x) n2(x)
0 −n2(x) n1(x)

 , ∀ n(x) ∈ Rd.28

29

The above relation is the rational invariance property defined in (6). One can check that30

EV
(
A(1)

)
− = p = 1 which, due to (7), implies EV (An)− = EV

(
A(1)

)
− = 1. Therefore,31

along the boundary we prescribe only one boundary condition.32

Let α = (α1, α2, α3)T be the solution vector. One can show that boundary conditions of the33

following form prescribe a value to only the incoming characteristics34

α1(x, t) = R(x)(n1(x)α2(x, t) + n2(x)α3(x, t)). (18)35
36

Above, R(x) ∈ R+ for all x ∈ ∂Ω, and for simplicity we have considered zero boundary in-37

homogeneity i.e. G = 03×1. Here the positive scalar R(x) can encode, for e.g., the reflection38

coefficient of a boundary surface.39

To see that the above boundary conditions lead to stability of the wave equation, we multiply40

the 2D wave equation with αT , use the above matrices A(i), integrate over the domain Ω× [0, T ]41

and use Gauss-Theorem to find42

‖α(·, T )‖2L2(Ω;R3)−‖αI‖
2
L2(Ω;R3)= −

∮
∂Ω
αTAnαds = −2

∮
α1(n1α2 + n2α3)ds.43

44
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Substituting wave equation’s boundary conditions from (18) into the above relation, and using1

the positivity of R, we find the L2-bound2

‖α(·, T )‖2L2(Ω;R3)≤ ‖αI‖
2
L2(Ω;R3).3

4

To get the boundary matrix B(x), we express the boundary conditions in a matrix-vector product5

form to find6

B(x) = (1,−R(x), 0)ωn =
(

1,−R(x)Ã
)
ωn, ∀ x ∈ ∂Ω.7

8

Using the above boundary matrix B(x) and the matrix A(1) from (17), in the definition of the9

characteristic penalty matrix Σc (given in (14)) and the odd penalty matrix Σo (given in (16)),10

we find11

Σc(x) =
1

1 +R(x)
(−1, n1(x), n2(x))T , Σo(x) = (0, n1(x), n2(x))T , ∀ x ∈ ∂Ω.12

13

Clearly, through the boundary normal n(x), both the penalty matrices depend upon the shape of14

the boundary ∂Ω whereas only the characteristic penalty matrix Σc is R(x)-dependent.15

3. Linearised Moment Equations16

This sections shows how the linearised Grad’s moment equations are a special case of our general17

framework. We first present the linearised BE.18

3.1 The Linearised Boltzmann Equation Let f̄ : Ω × [0, T ] × Rd → R+, (x, t, ξ) 7→19

f̄(x, t, ξ), represent the phase density function of a mono-atomic gas. The variable ξ ∈ Rd denotes20

the velocity of a gas molecules. We assume that f̄ is normalised such that its macroscopic21

moments, density (ρ̄), mean flow velocity (v̄i), temperature in energy units (θ̄), stress tensor22

(σ̄ij), and heat flux (q̄i), are given as23

ρ̄ =

∫
Rd
f̄dξ, ρ̄v̄i =

∫
Rd
ξif̄dξ, ρ̄v̄iv̄i + dρ̄θ̄ =

∫
Rd
ξiξif̄dξ,24

σ̄ij =

∫
Rd
C<iCj>f̄dξ, q̄i =

1

2

∫
Rd
CiCjCj f̄dξ,25

26

where Ci = ξi− v̄i is the so-called peculiar velocity, the angular brackets denote the trace free part27

of a tensor, and repeated indices imply Einstein’s summation convention. See [35] for a detailed28

discussion on tensors. For simplicity, we non-dimensionalise all quantities with appropriate29

powers of some reference density ρ̄0, temperature θ̄0 and length scale L.30

For low Mach number flows, we assume f̄ to be a perturbation of a ground state f0 i.e.,31

f̄ = f0 + εf where ε is a smallness parameter and f0(ξ) = exp (−ξiξi/2) /
d
√

2π is a ground-state32

Gaussian distribution function. Replacing the linearisation for f̄ into the non-linear BE and33

ignoring terms of order higher than O(ε), we find the governing equation for f [16]34

∂tf + ξi∂xif =
1

Kn
Q(f), in Ω× [0, T ]× Rd, f(t = 0) = fI , on Ω× Rd,

f = fin, on [0, T ]× ∂Ω−,
(19)35

where fI and fin are some suitable initial and boundary data, respectively. Substituting the lin-36

earisation of f̄ into the definition of the macroscopic moments, we find the following linearisation37

for the different macroscopic quantities38

ρ̄ = 1 + ερ, v̄i = εvi, θ̄ = 1 + εθ, σ̄ij = εσij , q̄i = εqi. (20)39
40

We will refer to the quantities ρ, vi, etc., as the deviations in the respective macroscopic quan-41

tities. For stability analysis, we make regularity assumptions on the initial and boundary data.42

9



3 LINEARISED MOMENT EQUATIONS

Assumption 4. We assume that fI ∈ L2(Ω× Rd, f−1
0 ) and fin ∈ L2(∂Ω× [0, T ]× Rd, f−1

0 ).1

The set ∂Ω− in (19) collects all those points along ∂Ω × Rd that correspond to incoming2

molecular velocities, and is given as3

∂Ω− := {(x, ξ) ∈ ∂Ω× Rd : ξini(x) < 0},4
5

where n(x) is the unit vector defined in (5).6

In (19), Q is a linearised collision operator that could be a linearisation of either the BGK op-7

erator, the Boltzmann operator or, any other non-linear operator that models collisions between8

gas molecules. See [11] for an explicit expression of different collision operators. Although for9

stability analysis the exact form of Q is not important, Q must satisfy the following dissipation10

property11

〈f,Q(f)〉K ≤ 0 ∀ f ∈ K, (21)12
13

where K is a Hilbert space defined as14

K := L2(Rd, f−1
0 ), ‖r‖K :=

√∫
Rd
r2f−1

0 dξ, 〈r, g〉K :=

∫
Rd
rgf−1

0 dξ. (22)15

16

One can prove that both the linearised BGK and the linearised Boltzmann operator satisfy the17

above dissipation property [11, 15]. The dissipation property in (21) signifies the entropy dissi-18

pation caused by inter-molecular collisions, and is equivalent to −Q being lower semi-bounded19

on K. The factor Kn that scales the collision operator is the Knudsen number and results from20

the non-dimensionalisation of the BE.21

3.2 Linearised moment equations To give our moment approximation, we first define22

the notion of moments.23

Moments and Hermite polynomials: We define tensorial Hermite polynomials as [8, 14]24

ψβ(i)(ξ) :=
d∏
p=1

He
β
(i)
p

(ξp) , β(i) :=
(
β

(i)
1 , . . . , β

(i)
d

)
, ‖β(i)‖l1= m, (23)25

where β(i) ∈ Nd is a multi-index, m is the so-called degree of the basis function and Hei is an26

i-th order Hermite polynomial which satisfies orthogonality and recursion27

1√
2π

∫
R
Hei (y)Hej (y) exp

(
−y

2

2

)
dy = δij ⇒

∫
Rd
ψβ(k)ψβ(l)f0dξ =

d∏
p=1

δ
β
(k)
p β

(l)
p

(24a)28

√
i+ 1Hei+1 (y) +

√
iHei−1 (y) = yHei (y) , ∀ y ∈ R. (24b)29

30

Through the following definition, we collect basis functions corresponding to a particular degree31

in a vector, and define the notion of moments.32

Definition 3.1. Let n(m) represent the total number of basis functions (ψβ(i)(ξ)) of degree m33

i.e. ‖β(i)‖l1= m. We collect all such basis functions in a vector ψm(ξ) ∈ Rn(m). Using ψm(ξ),34

we define λm : K → Rn(m) as λm(r) := 〈ψmf0, r〉K , ∀r ∈ K. Thus, λm(r) represents a vector35

containing all the m-th order moments of r.36

We do the same as above for the even (and odd) basis functions and moments.37

10



3.2 Linearised moment equations

Definition 3.2. Let no(m) and ne(m) denote the total number of tensorial Hermite polynomials1

in ψm(ξ) which are odd and even with respect to ξ1, respectively. Correspondingly, let ψom(ξ) ∈2

Rno(m) and ψem(ξ) ∈ Rne(m) represent vectors containing those basis functions, out of ψm(ξ),3

which are odd and even with respect to ξ1, respectively. Then, we define λom : K → Rno(m) and4

λem : K → Rne(m) as λom(r) := 〈ψomf0, r〉K , λem(r) := 〈ψemf0, r〉K where r ∈ K.5

Now we define vectors which collect all the basis functions and moments upto a particular degree.6

Definition 3.3. To collect all the odd and even moments of r ∈ K which have a degree less7

than or equal to M (m ≤M), we define8

Ψo
M (ξ) :=

(
ψo1(ξ)T, ψo2(ξ)T, . . . , ψoM (ξ)T

)T
, Ψe

M (ξ) :=
(
ψe0(ξ)T, ψe1(ξ)T, . . . , ψeM (ξ)T

)T
9

ΛoM (r) :=
(
λo1(r)T, λo2(r)T, . . . , λoM (r)T

)T
, ΛeM (r) :=

(
λe0(r)T, λe1(r)T, . . . , λeM (r)T

)T
10
11

where ΛoM : K → RΞMo , ΛeM : K → RΞMe , Ψo
M (ξ) ∈ RΞMo and Ψe

M (ξ) ∈ RΞMe . We represent12

the total number of odd and even moments of degree less than or equal to M through ΞMo :=13 ∑M
i=1 no(i) and ΞMe :=

∑M
i=0 ne(i) respectively. To collect all the moments of r ∈ K which are14

of order less than or equal to M (m ≤M), we additionally define15

ΨM (ξ) :=
(
Ψo
M (ξ)T,Ψe

M (ξ)T
)T
, ΛM (r) :=

(
ΛoM (r)T,ΛeM (r)T

)T
16
17

where ΨM (ξ) ∈ RΞM , ΛM : K → RΞM with ΞM = ΞMo + ΞMe =
∑M

m=0 n(m).18

Moment Equations: Following Grad’s methodology [14], we approximate the solution to the19

linearised BE (given in (19)) through the series expansion20

f(x, t, ξ) ≈ fM (x, t, ξ) =f0(ξ)
M∑
m=0

λm(fM (x, t, .)) · ψm(ξ) = f0(ξ) (ΛM (fM (x, t, .)) ·ΨM (ξ)) .

(25)21

To get the governing equation for ΛM (fM (x, t, .)), we test the linearised BE with ΨM (ξ), inte-22

grate over the velocity space Rd, and replace f by fM to find [35]23

∂tΛM (fM (x, t, .)) +A
(i)
M ∂xiΛM (fM (x, t, .)) =PMΛM (fM (x, t, .)), ∀ (x, t) ∈ Ω× [0, T ], (26a)24

ΛM (fM (x, t = 0, .)) =ΛM (fI(x, .)), ∀ x ∈ Ω, (26b)25

BMΛM (fM (x, t, .)) =GM (x, t), ∀ (x, t) ∈ ∂Ω× [0, T ], (26c)26
27

where fI is the initial data for the linearised BE, and the matrices A
(i)
M ∈ RΞM×ΞM and PM ∈28

RΞM×ΞM , are given as29

A
(i)
M =

〈
ΨMf0, ξi (ΨM )T f0

〉
K
, PM =

1

Kn

〈
ΨMf0, (Q (ΨMf0))T

〉
K
. (27)30

31

The value of M in (25) determines the formal accuracy of Grad’s expansion along the velocity do-32

main, with larger values of M leading to higher accuracy. We emphasise on the word formal here33

because, as M →∞, the moment approximation error (i.e. ‖fM (·, T, ·)− f(·, T, ·)‖L2(Ω×Rd,f−1
0 ))34

might not convergence to zero monotonically. Later, we will observe this non-monotonic con-35

vergence in our numerical results. Choosing different values of M results in a hierarchy of36

macroscopic models that converge to the BE, and by Chapman-Enskog expansion, one can show37

that for M ≥ 2, all of these macroscopic models contain the linearised Euler and Navier-Stokes38

equations [31, 35].39

The following discussion develops an explicit form for the matrix BM by comparing the40

moment equations to the earlier discussed general framework.41
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3 LINEARISED MOMENT EQUATIONS

Similarities to the general framework: We show that the linearised moment equations1

satisfy assumption 2, and thus are a special case of the general IBVP (1). For the result that2

follows, we will need the following rotational property of the basis functions3

Onmψm(Onξ) = ψm(ξ), ∀ ξ ∈ Rd,4
5

where On ∈ Rd×d is an orthogonal matrix, which rotates the Cartesian coordinates to the local6

coordinates defined by n(x), and Onm ∈ Rn(m)×n(m) is also an m and n(x) dependent orthogonal7

matrix. A detailed derivation of this property can be found in [47] and references therein. Using8

ΨM from definition 3.3 and the above relation, it is trivial to conclude that9

ÔnMΨM (Onξ) = ΨM (ξ), (28)10
11

where ÔnM ∈ RΞM×ΞM is an orthogonal matrix with different entries of Onm (m ≤ M) placed at12

appropriate locations. We will not need the explicit forms of Onm and ÔnM , interested reader can13

find these explicit forms in [45].14

The result given below shows that A
(1)
M has the form15

A
(1)
M =

 0ΞMo ×ΞMo
A

(M,M)
Ψ(

A
(M,M)
Ψ

)T
0ΞMe ×ΞMe

 , (29)16

17

which is similar to the one assumed in (3). Above, 0ΞMo ×ΞMo
is a zero matrix of size ΞMo × ΞMo18

and the matrix A
(M,M)
Ψ is defined in the following.19

Definition 3.4. We define20

A
(k,l)
ψ :=

〈
Ψo
kf0, ξ1 (ψel )

T f0

〉
K
, A

(k,l)
Ψ =

(
A

(k,0)
ψ , A

(k,1)
ψ , . . . , A

(k,l)
ψ

)
,21

22

where A
(k,l)
Ψ ∈ RΞko×Ξle and A

(k,l)
ψ ∈ RΞko×ne(l). As is clear from the definition, A

(k,l)
ψ is the inner23

product (in K) of the two vectors Ψo
k(ξ)f0(ξ) and ξ1ψ

e
l (ξ)f0(ξ). Moreover, A

(k,l)
ψ are the different24

columns of A
(k,l)
Ψ .25

The following result shows that the linearised moment system (26a) satisfies assumption 2.26

It is an extension of the results presented in [32, 33], and follows from a manipulation of inner27

products between Hermite polynomials. It extensively uses orthogonality between even and odd28

Hermite polynomials (24a), the recursion relation (24b) and the above mentioned rotational29

property of the basis. All of these properties are also satisfied by the spherical harmonics that30

are used to derive the PN equations [6]. Therefore, we expect that a result of the following type31

must also hold true for the PN equations. We hope to present such a result in our future work.32

Lemma 3.1. For the linearised moment equations given in (26a), following holds.33

1. The matrices A
(i)
M , i ∈ {1, . . . , d}, are symmetric.34

2. The matrix A
(1)
M given in (27) has the structure35

A
(1)
M =

 0ΞMo ×ΞMo
A

(M,M)
Ψ(

A
(M,M)
Ψ

)T
0ΞMe ×ΞMe

 . (30)36

37

3. The matrix A
(M,M)
Ψ is of full rank: rank(A

(M,M)
Ψ ) = ΞMo .38
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3.3 Finite Element Approximation: Boundary Discretization

4. Let n(x) ∈ Rd be the unit vector given in (6). Similar to An, define AnM as39

AnM :=
d∑
i=1

A
(i)
Mni(x). (31)1

2

Then, AnM is rotationally invariant i.e., AnM =
(
ÔnM

)T
A

(1)
M ÔnM where ÔnM is the orthogonal3

matrix given in (28).4

5. The matrix PM (27) is negative semi-definite.5

Proof. See appendix C.6

Boundary Conditions: Using the generic structure of the boundary matrix given in (8), we7

develop the boundary matrix BM for the moment system. First, we compare our moment system8

(26a) to the general IBVP (1) which provides9

p = ΞMo , q = ΞMe , Ã = A
(M,M)
Ψ , EV (AnM )− = EV

(
A

(1)
M

)
−

= ΞMo , ∀ n(x) ∈ Rd,

n = p+ q = ΞMo + ΞMe = ΞM , ωn = ÔnM .
(32)10

Using the above relations in the expression for the general boundary matrix (8), we find an11

explicit form of BM12

BM (x) =
(
IΞMo ×ΞMo

,−RMA(M,M)
Ψ

)
ÔnM , ∀ x ∈ ∂Ω, (33)13

14

where IΞMo ×ΞMo
∈ RΞMo ×ΞMo is an identity matrix, RM ∈ RΞMo ×ΞMo is a s.p.d matrix and BM (x) ∈15

RΞMo ×ΞM . The explicit form of RM was developed in [32] and is given as16

RM = B
(M,M−1)
Ψ

(
A

(M,M−1)
Ψ

)−1
, (34)17

18

where the matrix B
(M,M−1)
Ψ ∈ RΞMo ×ΞM−1

e is given as19

B
(M,M−1)
Ψ = 2

∫
Rd−1

∫
ξ1>0

Ψo
M

(
Ψe
M−1

)T
f0dξ.20

By definition, B
(M,M−1)
Ψ is a weighted inner product of the odd and even basis functions along the21

half velocity space. Similar to B
(M,M−1)
Ψ , the boundary inhomogeneity GM (26c) is a projection22

of the boundary data (fin) onto the odd basis functions along the half velocity space and is23

given as [29, 33, 35]24

GM (x, t) =

∫
Rd−1

∫
ξ1<0

Ψo
M (ξ)fin(x, t, ξ)dξ, ∀ (x, t) ∈ ∂Ω× [0, T ]. (35)25

26

Remark 4. The boundary matrix in (33) leads to the following desirable properties. Firstly, it27

leads to the well-posedness of the IBVP in (26a)-(26c) which results from the boundary matrix28

prescribing boundary conditions to the incoming characteristic and leading to a L2-bound for the29

solution. Secondly, at least for a half-space spatial domain (i.e. Ω = (−∞, 0)× (−∞,∞)× . . .×30

(−∞,∞)), as M →∞, the moment system in (26a), along with the above boundary conditions,31

converges to the solution of the linearised BE in the L2-sense [31]. Lastly, a Chapman-Enskog32

expansion of the boundary conditions leads to the boundary conditions of the Euler and Navier-33

Stokes equations, which is in agreement with the derivation of these macroscopic models from34

the BE [42].35

Any set of boundary conditions that provide the above three properties is acceptable, and it36

is not yet established that only the boundary matrix in (33) provides these properties.37
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3 LINEARISED MOMENT EQUATIONS

3.3 Finite Element Approximation: Boundary Discretization As a result of38

lemma 3.1, a stable semi-discrete FE approximation for moment equations follows from the1

general formulation in (11), and is given as2

find ΛM (fhM (t)) ∈ Vh such that∫
Ωh

φT∂tΛM (fhM (t))dx+

d∑
i=1

∫
Ωh

φTA
(i)
M ∂xiΛM (fhM (t))dx−

∫
Ωh

φTPMΛM (fhM (t))dx

=

∮
∂Ωh

φTΣM
(
BMΛM (fhM (t))− GM (t)

)
ds, ∀ φ ∈ Vh, ∀ t ∈ [0, T ],∫

Ωh

φTΛM (fhM (t = 0))dx =

∫
Ωh

φTΛM (fI)dx, ∀ φ ∈ Vh.

(36)3

Above we have suppressed dependencies on x and ξ for brevity. The penalty matrix ΣM is either4

the characteristic penalty matrix (15) or the odd penalty matrix (16), both of which are given5

as6

Characteristic Penalty: ΣM
c (x) =

1

2

(
ÔnM

)T (
A

(1)
M − |A

(1)
M |
)
X−M

(
B

(1)
M (x)X−M

)−1
,

Odd Penalty: ΣM
o (x) =

(
ÔnM

)T
(

0ΞMo ×ΞMo(
A

(M,M)
Ψ

)T

)
.

(37)7

Above, B
(1)
M (x) =

(
IΞMo ×ΞMo

,−RMA(M,M)
Ψ

)
, and we identify B

(1)
M (x) by comparing general8

boundary matrix (8) with moment equation’s boundary matrix (33). Moreover, ÔnM is the ro-9

tation matrix in (28), X−M contains all those eigenvectors of A
(1)
M that correspond to its negative10

eigenvalues, and A
(M,M)
Ψ is as given in definition 3.4.11

3.4 Gas-wall interaction The BE’s boundary conditions given in (19) are inflow-outflow12

type but in all our numerical experiments we will consider a fully accommodated wall boundary.13

For completeness, we show that such a wall boundary is included in our above framework. The14

details of our discussion are given in [14, 29, 32, 33]. We model the gas-wall interaction using15

Maxwell’s accommodation model where the boundary data fin, for a fully accommodated wall,16

reads17

fin(x, t, ξ) =

(
ρin(x, t) + vini (x, t)ξi +

θin(x, t)

2
(ξiξi − 3)

)
f0(ξ). (38)18

19

Above, vin and θin denote the deviations in a wall’s velocity and temperature, respectively. Let20

vn = vini denote the normal wall velocity, we consider only those walls that have vn = 0, and we21

compute ρin in terms of vin and θin such that the normal velocity remains zeros. Physically, this22

is equivalent to ensuring that the net mass-flux across the wall is zero. An explicit expression23

for ρin can be found in several works, a few of which are [14, 28, 29].24

Projecting Maxwell’s accommodation model onto odd basis functions, and adjusting the25

coefficients of the highest order even moments provides the boundary conditions26

Bwall
M ΛM = Gwall

M where Bwall
M =

(
IΞMo ×ΞMo

,−Rwall
M A

(M,M)
Ψ

)
ÔnM .27

28

Above A
(M,M)
Ψ is given in definition 3.4, and ÔnM is the rotation matrix in (28). Moreover, in29

contrast to the s.p.d matrix RM given in (33), the matrix Rwall
M ∈ RΞMo ×ΞMo is only symmetric30

positive semi-definite. Semi-definiteness of Rwall
M leads to a L2 bound for the moment solution31

14



if and only if Gwall
M ∈ range(Rwall

M ). This condition holds true because Rwall
M and Gwall

M have the32

structure1

Rwall
M =

(
0 01×(ΞMo −1)

0(ΞMo −1)×1 R̂wall
M

)
, Gwall

M =

(
0

Ĝwall
M

)
,2

3

where R̂wall
M is s.p.d. This proves that with the gas-wall boundary conditions, a moment solution4

is bounded in L2 and one can ensure stability on a spatially discrete level using the same5

framework as developed above.6

4. Weak kinetic boundary discretization7

In previous sections, we approximated the linearised BE in the following three steps. Firstly,8

we approximated f along the velocity space through the Hermite series expansion given in (25).9

Secondly, we equipped fM with boundary conditions given in (33). Lastly, we approximated fM10

along the spatial domain (Ω) through the FE approximation given in (36). Here we combine11

the first and the second step by defining a finite-dimensional space Vh,M that combines the12

spatial and the velocity space approximation. We approximate the linearised BE by projecting13

it onto Vh,M and with a SAT we impose boundary conditions of the linearised BE weakly hence14

the name, weak kinetic boundary discretization. In the sense of (12), we show that such a FE15

approximation is stable. Moreover, for classical continuously differentiable solutions, we argue16

that a weak kinetic boundary implementation prescribes the incorrect number of boundary17

conditions. The details are as follows.18

To combine the spatial and the velocity space approximation, we include the velocity space19

approximation in Vh by defining20

Vh,M := {(α(x) ·ΨM (ξ)) f0(ξ) : α ∈ Vh},21

where Vh and ΨM are as given in (10) and definition 3.3, respectively. Trivially, Vh,M is a finite22

dimensional subspace of the Hilbert space23

X := L2(Ω× Rd, f−1
0 ), ‖r‖X :=

√∫
Ω

∫
Rd
r2f−1

0 dξdx, 〈r, g〉X :=

∫
Ω

∫
Rd
rgf−1

0 dξdx. (39)24

25

By projecting the linearised BE (19) onto Vh,M , we approximate its solution through the varia-26

tional form27

find fhM (t) ∈ Vh,M such that〈
φ, ∂tf

h
M (t)

〉
X

+
〈
φ, ξi∂xif

h
M (t)

〉
X

=
1

Kn

〈
φ,Q(fhM (t))

〉
X

+

∮
∂Ωh

∫
Rd
φΣk

(
fhM (t)− fin(t)

)
f−1

0 dξds, ∀ φ ∈ Vh,M , ∀ t ∈ [0, T ],〈
φ, fhM (t = 0)

〉
X

= 〈φ, fI〉X , ∀ φ ∈ Vh,M .
(40)28

Similar to (11), the underlined term imposes boundary conditions weakly, and we need an29

explicit expression for the scalar kinetic penalty matrix Σk. Since the linearised BE is symmetric30

hyperbolic, we get Σk by formulating a characteristic penalty matrix (i.e. Σc) for the linearised31

BE. First we identify different matrices appearing in the expression for Σc given in (14). Since32

An = ξini is a scalar, X−n is one. Moreover, the boundary matrix B(x), for all x ∈ ∂Ω, is also33

15



4 WEAK KINETIC BOUNDARY DISCRETIZATION

one. Substituting the expression for An, B(x) and X−n into the expression for Σc given in (14),34

we find2
1

Σk(x) =
1

2
(ξini(x)− |ξini(x)|) , ∀ x ∈ ∂Ω. (41)2

3

For the above Σk, the following result establishes the stability of the variational form in (40).4

Lemma 4.1. Similar to assumption 3, assume that the solution to the semi-discrete FE approx-
imation (40) is continuously differentiable in time

fhM (x, ·, ξ) ∈ C1([0, T ]), ∀ (x, ξ) ∈ Ω× Rd.

Then, with Σk given by (41), the semi-discrete FE approximation (40) satisfies5

‖fhM (·, T, ·)‖2X≤ C(T, fhI , f
h
in) (42)6

7

where fhI and fhin are some numerical approximations to fI and fin, respectively.8

Proof. See appendix D.9

Remark 5. Fundamentally, both ΣM
c given in (37) and Σk given in (41) are characteristic10

penalty matrices. However, ΣM
c uses characteristic splitting for moment equation’s boundary11

conditions whereas Σk uses the same splitting for linearised BE’s boundary conditions. For the12

same reason, only ΣM
c is M -dependent.13

As to our knowledge, the variational form in (40) is not well-known whereas, the variational14

form involving an upwind kinetic numerical fluxes has received attention in the literature [1, 23,15

41]. The following result establishes equivalence between the variational form in (40) and the16

one that uses upwind kinetic numerical fluxes along element boundaries.17

Lemma 4.2. The variational form in (40) is equivalent to18

find ΛM (fhM (t)) ∈ Vh such that∫
Ωh

φT∂tΛM (fhM (t))dx+
∑
κ∈Ωh

∫
∂κ
φTF(Λ

(κ,−)
M ,Λ

(κ,+)
M ;nκ)ds

−
∑
κ∈Ωh

d∑
i=1

∫
κ

(∂xiφ)TA
(i)
MΛM (fhM (t))dx =

∫
Ωh

φTPMΛM (fhM (t))dx, ∀ φ ∈ Vh, ∀ t ∈ [0, T ],∫
Ωh

φTΛM (fhM (t = 0))dx =

∫
Ωh

φTΛM (fI)dx, ∀ φ ∈ Vh,

(43)19

where F(Λ
(κ,+)
M ,Λ

(κ,−)
M ;nκ) is the upwind kinetic numerical flux given as20

F(Λ
(κ,+)
M ,Λ

(κ,−)
M ;nκ) =

AnκM
2

(
Λ

(κ,+)
M + Λ

(κ,−)
M

)
+
Dnκ
M

2

(
Λ

(κ,+)
M − Λ

(κ,−)
M

)
,21

Dnκ
M :=

∫
Rd

ΨM |ξ · nκ|(ΨM )T f0dξ.22

23

2We can also recover an expression for Σk by comparing the linearised BE with a scalar advection equation
given by ∂tu(x, t) + βi∂xiu(x, t) = 0 where β ∈ Rd is a constant vector. Penalty matrix for the scalar advection
equation is given as [40]

Σ(x) =
1

2
(βini(x)− |βini(x)|) , ∀ x ∈ ∂Ω.

By identifying β as ξ we find (41).

16



Above in (43), ∂κ denotes the boundary of an element κ. The unit vector nκ(x) ∈ Rd points24

out of the domain and is perpendicular to an element’s boundary at the point x ∈ ∂κ. The1

matrix AnκM is the same as AnM given in (31) but with n replaced by nκ. The quantities Λ
(κ,+)
M2

and Λ
(κ,−)
M represent the inner and outer traces of ΛM (fhM (t)), respectively, along the boundary3

of the element κ. We assume Λ
(κ,−)
M = ΛhM (fin) for elements with ∂κ ∩ ∂Ωh 6= ∅.4

Proof. See appendix E.5

Along with being stable, it is intuitive to prescribe boundary conditions through an upwind6

kinetic numerical flux. For this reason, earlier works have proposed such a boundary treatment7

for non-linear moment equations [1, 22]. Below we consider the variational form (given in (40))8

in a spatially continuous setting, and by showing that it prescribes incorrect number of boundary9

conditions, we show that it is ill-posed.10

Remark 6. To recover a DG discretization from (43), we can expand the approximation space11

Vh,M by including functions that are discontinuous along all the element’s boundaries. Such a12

DG discretization differs from a CG discretization (given in (40)) only in terms of inter-element13

fluxes. The following analysis assumes a continuously differentiable solution for which the inter-14

element fluxes vanish, making a DG discretization the same as the CG one. Therefore, our15

analysis is also valid for a DG discretization.16

Discussion: From the proof of the above result (see appendix E), we know that on a spatially17

continuous level the variational form in (40) is equivalent to the following.18

Find ΛM (fM (t)) ∈
[
H1(Ω)

]ΞM
such that∫

Ω
φT∂tΛM (fM (t))dx+

d∑
i=1

∫
Ω
φTA

(i)
M ∂xiΛM (fM (t))dx−

∫
Ω
φTPMΛM (fM (t))dx

=
1

2

∮
∂Ω
φT (AnM −Dn

M ) (ΛM (fM (t))− ΛM (fin(t))) ds, ∀ φ ∈
[
H1(Ω)

]ΞM
, ∀ t ∈ [0, T ].

(44)19

Above,
[
H1(Ω)

]ΞM
denotes a standard Sobolev space of vector valued functions that is also the20

limit space of Vh for h→ 0. For brevity, we have suppressed the initial conditions.21

We restrict to those solutions of the variational problem (44) that are continuously differen-22

tiable in space and time. Such a solution satisfies the moment system23

∂tΛM (fM (x, t, ·)) +
d∑
i=1

A
(i)
M ∂xiΛM (fM (x, t, ·)) = PMΛM (fM (x, t, ·)). (45)24

25

Moreover, to make the boundary integral in (44) vanish, such a solution should satisfy26

(AnM −Dn
M ) ΛM (fM (x, t, ·)) = (AnM −Dn

M ) ΛM (fin(x, t, ·)), ∀ (x, t) ∈ ∂Ω× [0, T ], (46)27
28

where AnM and Dn
M are given in (31) and (43), respectively.29

The relation in (46) prescribes ΞM (i.e. the total number of moments) boundary conditions30

if (AnM −Dn
M ) is invertible. Invertibility of (AnM −Dn

M ) follows from the following argument.31

By definition, AnM and Dn
M are symmetric implying that (AnM −Dn

M ) is symmetric. Moreover,32

(AnM −Dn
M ) is negative definite because for all r ∈ K (r 6= 0) we have33

(ΛM (r))T (AnM −Dn
M ) ΛM (r) = (ΛM (r))T

(∫
ξini<0

ΨMξini (ΨM )T f0dξ

)
ΛM (r)34

=

∫
ξini<0

(ΛM (r) ·ΨMf0)2 ξinif
−1
0 dξ < 0.35

36

17



5 NUMERICAL RESULTS

Symmetricity and negative definiteness of (AnM −Dn
M ) implies that it is invertible.37

Hence, the relation in (46) prescribes ΞM boundary conditions. The total number of incoming1

characteristics for the linear moment system (45) are equal to the total number of odd moments2

i.e., ΞMo . Since ΞMo < ΞM , the relation in (46) prescribes more boundary conditions than the3

number of incoming characteristic implying that it is ill-posed [21].4

Remark 7. For h > 0, the variational form (40) has a viscous term along the boundary that5

allows for more boundary terms than those needed by the moment system (26a). However, for6

h→ 0 the viscosity vanishes and the same must hold for the extra boundary terms. As discussed7

above, this is certainly not the case for the variational form in (26a). For a small enough8

viscosity (that results from a small enough grid size), the non-vanishing boundary terms could9

result in a steep boundary layer that can cause oscillations in both the CG and the higher-order10

DG schemes. In the coming section, we observe such oscillations that could be a result of these11

steep boundary layers. First-order finite volume schemes do not show such oscillations, which12

could explain the absence of oscillations in the results reported in [1, 2]. A further analytical13

study is needed to pinpoint the exact reason behind the oscillations we report later.14

5. Numerical Results15

Through numerical experiments, we study both the spatial discretization error and the physical16

accuracy of moment solutions computed using different penalty matrices. We define the spatial17

discretization error as18

EΩh,M := ‖fM (·, T, ·)− fhM (·, T, ·)‖L2(Ω×Rd,f−1
0 ), (47)19

20

which is the L2-error in approximating a given moment system using the continuous Galerkin21

scheme (36). We quantify the physical accuracy of a moment approximation using the following22

L2-error in macroscopic quantities23

EI,M :=

√∑
α∈I

(eα,M )2 where eα,M := ‖αref(·, T )− αM (·, T )‖L2(Ω). (48)24

25

Above, I is a set containing the macroscopic quantities defined in (20). These quantities are26

linear combinations of the expansion coefficients λm(fhM (x, t, ·)) given in (25), and one can find27

their explicit expressions in [7, 32, 43]. The quantity αref refers to a macroscopic quantity28

computed using a reference solution, the details of the reference solutions are given later.29

To study the physical accuracy of moment approximations, we compute EI,M and study its30

convergence rate with M . For the test cases we consider, the exact macroscopic moments (i.e.31

αM ) are not known that prohibits a direct computation of EI,M . Therefore, we approximate32

EI,M by EΩh,I,M where EΩh,I,M is the same as EI,M but with αM replaced by its approximation33

αhM . The error EΩh,I,M includes both the spatial discretization and the moment approximation34

error. To ensure that the moment approximation error dominates EΩh,I,M , we choose Ωh such35

that the convergence rate of EΩh,I,M , with respect to h, is minimal. We label such a Ωh as36

Ωhmin
where hmin signifies the minimum grid-size for which the spatial discretization error dom-37

inates EΩh,I,M . In algorithm 1, we provide a pseudo-code for computing Ωhmin
. The algorithm38

terminates as soon as the convergence rate of EΩh,I,M , between two subsequent refinements of39

Ωh, falls below a positive user-defined tolerance TOL. In the coming discussion, a reference to40

EI,M will mean its approximation through EΩhmin
,I,M .41

In all the experiments, we use a fourth-order Runge-Kutta scheme for temporal discretization,42

and we invert the mass matrix in the FE discretization directly. For steady-state problems, we43

assume that we reach steady-state when the rate of change in ‖fhM‖X is less than 10−8.44

18



5.1 Physical Accuracy Comparison

Algorithm 1 COMPUTE Ωhmin

INPUT: Ωh0 , TOL, M
OUTPUT: Ωhmin

l← 0
El ← EΩhl ,I,M
rate←∞
while rate > TOL do
El ← EΩhl ,I,M
Ωhl+1

← refine grid(Ωhl)
El+1 ← EΩl+1,I,M
rate← log (El+1/El) /log (hl/hl+1)
l← l + 1

end while
Ωhmin

← Ωl

5.1 Physical Accuracy Comparison For the following test cases, we consider a square45

domain Ω = (0, 1) × (0, 1) with all the four boundaries being fully accommodated solid walls.1

The details of an accommodation model are given in subsection 3.4. We fix the Knudsen number2

to 0.1, and we consider a linearised BGK collision model. The test case dependent initial data3

and the values of the boundary parameters (vin and θin) are as follows.4

(i) Gaussian density in a box (Test-1): As the initial data we consider5

fI(x, ξ) =
ρI(x)
3
√

2π
exp

(
−ξiξi

2

)
, ρI(x) =

2∏
i=1

exp

(
−50×

(
xi −

1

2

)2
)
.6

Velocity and temperature deviations (i.e. vin and θin) for all the walls are zero, and the7

final time is T = 0.3.8

(ii) Oscillating lid-driven cavity flow (Test-2): We consider zero initial data, fI = 0. As9

boundary data, we consider a harmonic tangential velocity for the top wall10

vin2 (x1, x2 = 1, t) = sin(4πt), ∀ (x1, t) ∈ (0, 1)× [0, T ].11

Velocity (vin) and temperature (θin) deviations for all the other walls are zero. As the12

final time we consider T = 1.13

(iii) Lid-driven cavity flow (Test-3): This test case is the same as the previous one, but14

rather than an oscillating tangential wall velocity, we consider a constant tangential wall15

velocity16

vin2 (x1, x2 = 1, t) = 1, ∀ (x1, t) ∈ (0, 1)× [0, T ].17

We look for a steady-state solution.18

(iv) Heated cavity (Test-4): We consider zero initial data fI = 0, and we heat the bottom19

wall with a constant temperature20

θin(x1, x2 = 0, t) = 1, ∀ (x1, t) ∈ (0, 1)× [0, T ].21

We consider zero velocity (vin) and temperature (θin) deviations for all the other walls,22

and we look for a steady state solution.23

19



5 NUMERICAL RESULTS

Reference solution: We use a discrete velocity method (DVM) to compute our reference24

solution. For two-dimensional problems, we make the DVM efficient by projecting the BE along1

the ξ3 velocity direction. In appendix F we present the equations resulting from this projection,2

further details can be found in [38]. For spatial discretization, we use the continuous Galerkin3

method given in (36) where we discretize Ω with Ndvm
x ×Ndvm

x uniform elements. As discrete4

velocity points, we consider a set of tensorised N × N Gauss-Legendre quadrature points on5

each of the four quadrants [0, c]× [0, c], [0, c]× [−c, 0], [−c, 0]× [0, c] and [−c, 0]× [−c, 0], where6

c ∈ R+ is the velocity cut-off. A separate tensorised grid for each velocity quadrant allows for7

an accurate treatment of the BE’s boundary conditions.8

For the non-liner BE, authors in [3] provide an approximation for the velocity cut-off c. We9

assume that their approximation is valid also for the linearised BE resulting in10

c ≈ max
x∈Ω,t∈[0,T ]

(
û(x, t) + 4

√
|θ(x, t)|

)
,11

where û(x, t) = max{|u1(x, t)|, |u2(x, t)|}. We estimate û and θ by uin and θin, respectively,12

and we take a maximum over all the test cases, this provides c = 1 + 4
√

1 = 5. Note that we13

need the modulus over θ because it is the temperature deviation (20), which could be negative.14

We start with (Ndvm
x , N) = (10, 5), and keep on increasing Ndvm

x by 15 and N by 5 until the15

relative L2-error in all macroscopic quantities between two subsequent increments falls below a16

tolerance of 10−3. For the Gaussian density in a box test case, the relative L2-error in different17

macroscopic quantities, under subsequent refinement of the DVM, is shown in Figure 1. We18

reach the desired tolerance for N = 20 and Ndvm
x = 100. Results for other test cases are similar19

and are not shown for brevity. Once we have the above values of N and Ndvm
x , for assurance20

we increase c by one and re-compute all the macroscopic quantities. For all the test cases, the21

re-computed macroscopic quantities did not differ (in the L2-sense) from the old ones by more22

than the machine precision implying that c = 5 is sufficient.

1 2 3 4 5 6

refinement cycle

10
-4

10
-3

10
-2

10
-1

L
2
 error in macroscopoic quantities

Figure 1: L2-error in different macroscopic quantities under subsequent refinement of the DVM.
Results for the Gaussian density in a box test-case.

23

Discretization details: We discretize Ω with Nx × Nx uniform elements and use the same24

value of Nx for all the test cases, we vary M over the set {3, . . . , 13}. To find Nx, we use25

the routine COMPUTE Ωhmin
. The purpose of COMPUTE Ωhmin

is to find a spatial grid for which26

the moment approximation error dominates EΩh,I,M . Since the moment approximation error27

is minimal for either M = 12 or M = 13 (a moment approximation might have oscillatory28

convergence), it is sufficient to run COMPUTE Ωhmin
for M = 12 and M = 13.29

20



5.1 Physical Accuracy Comparison

As Ωh0 , which is the input to COMPUTE Ωhmin
, we choose a grid with 10 × 10 elements, and30

during refine grid we increase the number of elements in each direction by five. We choose1

TOL = 10−1. Figure 2 shows the convergence rate of EΩh,I,M after every refinement cycle2

inside the algorithm COMPUTE Ωhmin
. The refinement cycle here refers to the index l inside the3

algorithm. Results are shown for M = 12 and are computed with a characteristic penalty4

matrix. Results for M = 13 and an odd penalty matrix are similar. The reason for not5

including the kinetic penalty matrix will be clear later. Table 1 shows the value of Nx resulting6

from COMPUTE Ωhmin
. To maintain consistency with the DVM, we choose Nx = 100 for all the7

test cases, which is greater than all the values given in Table 1.8
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Figure 2: Convergence rate after every refinement cycle inside COMPUTE Ωhmin
. Computations

done using M = 12 and a characteristic penalty matrix.

Test case Test-1 Test-2 Test-3 Test-4

Nx 35 40 40 55

Table 1: Result from COMPUTE Ωhmin
.

Remark 8. In all the coming numerical experiments, EΩh,I,M converges with a rate close to9

one with respect to M . This rate is ten times higher than the tolerance used for the convergence10

rate in COMPUTE Ωhmin
, which further justifies our choice of the tolerance.11

Comments on convergence rates: In the following test cases, we study the convergence12

rate of EI,M with respect to M . Theoretical results against which we can validate our observed13

convergence rates are currently non-existent. Although the authors in [30, 31] perform an a-priori14

convergence analysis, they focus on a half-space spatial domain (i.e. Ω = (−∞, 0)× (−∞,∞)×15

. . .× (−∞,∞)) that is not of much practical relevance. As compared to a half-space domain, a16

square domain has an irregular boundary, making it difficult to extend the convergence analysis.17

Despite the lack of a theoretical underpinning, the convergence rates for EI,M we present18

here have the following similarities to those presented for half-space problems [43]. Firstly,19

the convergence rate is test-case dependent. Secondly, the convergence rate might oscillate20

for even and odd values of M . These oscillations are the most prominent for steady-state21

problems; see for example the heated cavity test case 10(b). Thirdly, in all the test cases, the22

convergence rate stays approximately between 1 and 1.5. The first similarity results from a23

moment approximation being a Galerkin method for which the convergence rate is solution’s24

regularity dependent, and that is in turn test case dependent. A possible explanation for the25

21
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second observation (motivated from the error bound for half-space problems [31]) is that the26

terms in a moment approximation’s error bound, which degrade the convergence rate, vanish1

for even or odd values of M , thus leading to oscillations. However, even for half-space problems,2

a definitive explanation is missing, and a further analytical investigation is needed. The third3

similarity shows that for square domains, a moment approximation retains a similar accuracy4

as for a half-space domain, indicating that an error bound similar to a half-space problem must5

be feasible for a square (or more general) domain.6

In addition to oscillations in EI,M , we also observe oscillatory convergence for L2-errors in7

different macroscopic quantities. However, for a given test case, not all macroscopic quantities8

show oscillations in their error values. For example, in the oscillating lid-driven cavity flow9

(fig-6(c)), the error in v1 does not oscillate whereas the error in v2 does. Moreover, the error in10

a particular macroscopic quantities does not need to oscillate for every test case. For example,11

the error in ρ oscillates for the heated cavity test case (fig-10(c)) but does not oscillate for12

the Gaussian density in a box (fig-3(c)) test case. This test case dependent convergence of the13

L2-error in macroscopic quantities also results from the test-case dependent solution’s regularity.14

Gaussian density in a box (Test-1): Fig-3(b) shows the similarity in EI,M computed using15

the characteristic and the odd penalty matrices. For both the penalty matrices, EI,M converges16

monotonically with a rate close to 1.5. However, the error in individual macroscopic quantities17

eα,M does not necessarily converge monotonically; see fig-3(c) and fig-3(d). As an example18

consider σ12 that converges monotonically with M whereas σ11 does not. Fig-4(a) and fig-4(b)19

shows that for odd and even values of M , convergence rates of eα,M differ very slightly. This20

difference will be substantial in the following test cases.21

To study the solution computed using a kinetic penalty matrix, we simultaneously increase22

the value of M and the value of Nx. We consider five refinement cycles with (M,Nx) being23

(3, 60), (4, 80), (5, 100), (6, 120) and (7, 140). Fig-5(a) shows the deviation in density along24

a cross-section resulting from these five refinement cycles. For all the refinement cycles, the25

solution oscillates close to the boundary. As the final time is increased from T = 0.3 to T = 0.6,26

the oscillations reach the interior of the domain and pollute the entire solution. Fig-5(c) shows27

such a solution for M = 5, similar results were observed for other values of M . These oscillations28

are absent in solutions computed using the characteristic penalty matrix (see fig-5(b)). Since29

the FE approximation is stable (see lemma 4.1), despite the oscillations, the solution does not30

blow up in time. A possible explanation for these oscillations could be the one given in remark 7.31

Proving convergence (or non-convergence) numerically is impossible because one cannot let32

M,Nx → ∞. However, the oscillations do not vanish under the limited number of refinements33

considered above indicating that the sequence of moment solutions computed using the kinetic34

penalty matrix does not seem to convergence to the BE’s solution.35

Remark 9. Since the use of a weak kinetic boundary discretization leads to oscillatory solutions36

for all the following test cases, we refrain from discussing its results further. For the same reason,37

we do not use weak kinetic boundary discretization for discretization error comparison.38

Oscillating lid-driven cavity flow (Test-2): Only for even values of M , EI,M differs (see39

fig-6(b)) for the characteristic and the odd penalty matrix. Moreover, only for a characteristic40

penalty matrix EI,M shows oscillatory convergence. Convergence rate of EI,M stays close to41

one for both the penalty matrices. In comparison to the previous test case, there is a significant42

difference in the convergence rates of eα,M for the odd and even values of M ; see 7(a) and 7(b).43

Lid-driven cavity flow (Test-3): Like the previous test case, values of EI,M computed with a44

characteristic and an odd penalty matrix differ only for even values of M ; see fig-8(b). Increasing45
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Figure 3: Results for the Gaussian density in a box test case. (a) θ contours computed with
M = 13, at t = 0.3, over-plotted with heat flux streamlines computed with DVM (green) and
M = 13 (black). (b) Comparison of EI,M computed with a characteristic and an odd penalty
matrix. eα,M computed with a characteristic (c) and an odd (d) penalty matrix.

the value of M leads to oscillations in EI,M for both the penalty matrices, this is in contrast to46

the previous test case where EI,M showed oscillations for only the characteristic penalty matrix.1

Only for even values of M , we observe a significant difference in convergence rates of eα,M ; see2

fig-9(a) and fig-9(a).3

Heated cavity (Test-4): For both the odd and the charactersitic penalty matrix, EI,M os-4

cillates and shows faster convergence for odd values of M ; see fig-10(b). Moreover, only for5
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Figure 4: Results for the Gaussian density in a box test case. Convergence rate of eα,M computed
with (a) characteristic penalty matrix, and (b) odd penalty matrix.

odd values of M , EI,M differs between the two penalty matrices. For the convergence rates of6

the error eα,M , we observe the following. With a characteristic penalty matrix (fig-11(a)), odd1

values of M provide a higher convergence rate for all the macroscopic quantities. Whereas with2

an odd penalty matrix (fig-11(b)), neither the odd nor the even values of M provide a higher3

convergence rate for all the macroscopic quantities.4

Rarefaction effects: In the lid-driven cavity flow, moving the top wall tangentially creates a5

hot and a cold region near the upper right and the upper left corner of the domain, respectively.6

See fig-8(a) for the temperature profile in a lid-driven cavity flow. Fourier’s heat flux law7

dictates that near thermodynamic equilibrium, heat flows from a hot to a cold region. However,8

significant deviations from equilibrium can trigger an anti-Fourier heat flux that flows in the9

opposite direction i.e., from a cold to a hot region. The heat-flux streamlines in fig-8(a) show that10

the lid-driven cavity flow has an anti-Fourier heat flux which is not observed for the oscillating11

lid-driven cavity flow (see fig-6(a)).12

For a lid-driven cavity flow, fig-12(a) shows the velocity component v1 along the cross-section13

x1 = 0.5. At x2 = 1, gas velocity differs from that of the wall, creating the so-called velocity14

slip. Both the solutions computed using a charactersitic penalty matrix and an odd penalty15

matrix capture the velocity slip accurately. Similar is the case for the heated cavity test case16

(see fig-12(b)) where gas temperature differs from the wall temperature, creating the so-called17

temperature jump. The anti-Fourier heat flux, the temperature jump, and the velocity slip are18

classical rarefaction effects, all of which have been reported in the previous works [9, 28, 29, 43].19

Similar to rarefaction in gas, the use of a SAT might also lead to a velocity slip or a tem-20

perature jump. The rarefaction and the SAT induced boundary effects differ in the sense that21

the former results from gas deviating from a thermodynamic equilibrium whereas the later is22

a numerical artefact resulting from a finite grid size. Being models for gases close to a ther-23

modynamic equilibrium, neither Euler nor the Navier-Stokes equations capture the rarefaction24

boundary effects, but for a finite grid size, the use of a SAT can induce boundary effects in both25

the equations [27, 40]. Moreover, as the grid size tends to zero, boundary effects induced by26
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Figure 5: Results for the Gaussian density in a box test case. Deviation in density along
the cross-section x2 = 0.5. (a) Results for a kinetic penalty matrix, and (b) results for a
characteristic penalty matrix. (c) Compares the long-time behaviour of the solutions computed
using a characteristic and a kinetic penalty matrix.

rarefaction persist whereas those induced by a SAT (for a convergent numerical scheme) van-27

ish. Note that our choice of Ωh ensures that the spatial discretization error does not dominate,1

therefore the boundary effects reported in fig-12(a) and fig-12(b) are rarefaction dominated.2

5.2 Discretization Error Comparision We consider a square Ω = (0, 1) × (0, 1) as3

our spatial domain, and we discretize it with Nx × Nx uniform square elements. We choose4

five different values for Nx, Nx = {16, 32, 64, 128, 256} which corresponds to the grid sizes5

h = { 1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256}. We consider M = 3 (corresponds to the Grad’s-20 moment system6
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Figure 6: Results for the oscillating lid-driven cavity flow test case. (a) θ contours computed
with M = 13, at t = 0.3, over-plotted with heat flux streamlines computed with DVM (green)
and M = 13 (black). (b) Comparison of EI,M computed with a characteristic and an odd
penalty matrix. eα,M computed with a characteristic (c) and an odd (d) penalty matrix.

[8]), and use the method of manufactured solutions. As the exact solution we consider7

(ΛM (fM (x, t, .)))i =

{
cos(πt) sin(πx1) sin(πx2), i = 1

0, else
(49)1

2

where ΛM (fM (x, t, .)) is a vector containing all the expansion coefficients, and is given in defini-3

tion 3.3. Note that for a 2D physical space, moment system with M = 3 has ΞM = 13 unknowns4

[43], and therefore the above index i runs from 1 to 13. To ensure that the above function is5
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Figure 7: Results for the oscillating lid-driven cavity flow test case. Convergence rate of eα,M
computed with (a) characteristic penalty matrix, and (b) odd penalty matrix.

a solution to the moment system, we add a forcing term F (x, t) to the right of (26a). Explicit6

form of F (x, t) is given as1

(F (x, t))i =


−π sin(πt) sin(πx1) sin(πx2), i = 1

−π sin(πt) sin(πx1) sin(πx2), i = 2

π cos(πt) sin(πx1) cos(πx2), i = 3

0, else

. (50)2

3

As initial data we consider the exact solution with t = 0. We choose GM = 0 that ensures that4

the exact solution satisfies the boundary conditions in (26c). As final time we consider T = 1.5

To quantify the discretization error, we use EΩh,M defined in (47). Since weak kinetic boundary6

discretization leads to oscillations, we only compare solutions computed with a characteristic7

and an odd penalty matrix.8

In fig-13 we see that EΩh,M computed with both the penalty matrices has a convergence9

rate of two with respect to the grid size, which is as expected. However, EΩh,M (see table-10

2) computed with a characteristic penalty matrix has a higher value as compared to the one11

computed with an odd penalty matrix.12

EΩh,M (×105)

Penalty Matrix Nx = 16 Nx = 32 Nx = 64 Nx = 128 Nx = 256

Characteristic
(Σc)

389.80 97.47 24.36 6.09 1.52

Odd (Σo) 224.93 55.69 13.89 3.47 0.87

Table 2: Discretization errors computed with different penalty matrices. Results computed with
M = 3.

13
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6 DISCUSSION AND CONCLUSION
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Figure 8: Results for the lid driven cavity flow test case. (a) θ contours computed with M = 13,
at t = 0.3, over-plotted with heat flux streamlines computed with DVM (green) and M = 13
(black). (b) Comparison of EI,M computed with a characteristic and an odd penalty matrix.
eα,M computed with a characteristic (c) and an odd (d) penalty matrix.

6. Discussion and Conclusion14

We presented a FE approximation that preserves the stability of linearised moment equations1

on a spatially discrete level. We imposed boundary conditions with a SAT term and presented2

three different forms of the SAT. Each of these three forms lead to a stable FE approximation,3

and we showed that the SAT based upon the weak kinetic boundary discretization prescribes4

the incorrect number of boundary conditions. Through numerical experiments, we compared5

the discretization error and the physical accuracy of moment solutions computed using the char-6
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Figure 9: Results for the lid-driven cavity flow test case. Convergence rate of eα,M computed
with (a) characteristic penalty matrix, and (b) odd penalty matrix.

acteristic and the odd penalty matrix. The characteristic penalty matrix was found to provide7

better physical accuracy, whereas the odd penalty matrix provided a lower spatial discretization1

error.2

The use of weak kinetic boundary discretization (40) led to oscillatory solutions. Originating3

at the boundary, these oscillations traveled inside the domain leading to moment solutions that4

did not appear to converge to the DVM reference solution. Thus, at least for the linearised5

moment equations, weak kinetic boundary discretization fails to provide physically meaningful6

solutions. In [1, 22, 23, 41], authors recommend such a boundary discretization for an en-7

tropy minimisation based moment approximation. Moreover, the authors in [1] do not report8

oscillations in solutions to a non-linear moment approximation computed using an upwind ki-9

netic numerical flux. This either implies that the kinetic upwinding is well-posed for non-linear10

moment approximations, or it could result from the use of a first order finite volume scheme11

that suppresses oscillations. Theoretical understanding of boundary conditions for non-linear12

moment systems is underdeveloped prohibiting further conclusions.13

Previous studies [4, 29, 36] have (computationally) shown that by changing the matrix RM14

given in (34), one can improve the accuracy of a moment approximation. Adding on to these15

works, our results indicate that the SAT used to discretize the boundary conditions also in-16

fluences the physical accuracy. We explored only three different variants of the SAT, in future17

studies it might be possible to construct other variants of the SAT that will improve the accuracy18

of moment approximations.19
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A STABILITY WITH AN ODD PENALTY MATRIX
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Figure 10: Results for the heated cavity test case. (a) θ contours computed with M = 13,
at t = 0.3, over-plotted with heat flux streamlines computed with DVM (green) and M = 13
(black). (b) Comparison of EI,M computed with a characteristic and an odd penalty matrix.
eα,M computed with a characteristic (c) and an odd (d) penalty matrix.

Appendices20

A. Stability with an odd penalty matrix1

For convenience we define αnh = Onαh. Moreover, we assume αhn to be ordered as2

αnh =
(

(αp)
T , (αq)

T
)T

(51)3
4
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Figure 11: Results for the heated cavity test case. Convergence rate, with respect to M , for
eα,M obtained with (a) characteristic penalty matrix, and (b) odd penalty matrix.

0 0.2 0.4 0.6 0.8 1

x
2

-0.2

0

0.2

0.4

0.6

0.8

1

v
1
(x

1
=

0
.5

,x
2
)

v
1
 along a cross-section

DVM

characteristic

odd

wall velocity (v
1

in
)

(a)

0 0.2 0.4 0.6 0.8 1

x
2

0

0.2

0.4

0.6

0.8

1

(x
1
=

0
.5

,x
2
)

 along a cross-section

DVM

characteristic

odd

wall temperature (
in

)

(b)

Figure 12: (a) v1 along the cross-section x1 = 0.5 computed with M = 13 for the lid-driven
cavity flow. (b) θ along the cross-section x1 = 0.5 computed with M = 13 for the heated cavity.

with αp ∈ Rp and αq ∈ Rq. To derive a stability estimate for (11) we replace Σ by Σo, choose φ5

as αh(·, t) and use the semi-negative definiteness of P to find1 ∫
Ωh

(αh(t))T ∂tαh(t)dx+

d∑
i=1

∫
Ωh

(αh(t))TA(i)∂xiαh(t)dx ≤
∮
∂Ωh

(
Ãαq(t)

)T
(Bαh(t)− G(t)) ds.

(52)

2

3
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Figure 13: Comparison of discretization error. Computations done with M = 3.

Using the assumed structure of A(1) in (3) and the rotational invariance of An (6), we simplify4

the term with spatial derivatives to find1

d∑
i=1

∫
Ωh

(αh(t))TA(i)∂xiαh(t)dx =
1

2

∮
∂Ωh

(αh(t))TAnαh(t)ds

=
1

2

∮
∂Ωh

(Onαh(t))TA(1) (Onαh(t)) ds

=

∮
∂Ωh

(αp(t))
T Ãαq(t)ds

(53)2

Using the above expression and the explicit form of B from (8) in (52), we find3

1

2
∂t‖αh(t)‖2L2(Ωh;Rn)+

∮
∂Ωh

(αp(t))
T Ãαq(t)ds

≤
∮
∂Ωh

(
Ãαq(t)

)T (
αp(t)−RÃαq(t)− G(t)

)
ds.

(54)4

where the assumption in assumption 3 allowed us to use chain rule for the first term on the left.5

Simplifying the above inequality by cancelling out common terms, we find6

1

2
∂t‖αh(t)‖2L2(Ωh;Rn)≤−

∮
∂Ωh

(
Ãαq(t)

)T (
RÃαq(t) + G(t)

)
ds

≤1

4

∮
∂Ωh

(G(t))TR−1G(t)ds.

(55)7

For the last inequality, we have used a relation which holds true ∀y, b ∈ Rp8

yTRy + yTb = (y − ỹ)TR(y − ỹ)− ỹTRỹ ≤ −ỹTRỹ, ỹ = −1

2
(R)−1 b.9

10

Due to our assumption (assumption 1)
∮
∂Ωh
GTR−1Gds ∈ L∞([0, T ]), and therefore integrating11

(55) over [0, T ] completes our proof.12
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B. P3 equations of radiation transport13

For simplicity, we consider a two dimensional physical space, Ω ⊆ R2. We get the PN equations1

of radiation transport by expanding the distribution function in terms of spherical harmonics2

[6]. Let Y m
l represent a spherical harmonic where l ∈ N and m = −l, . . . , 0, . . . , l. For P3, l varies3

from zero to three. Let αml represent the expansion coefficients of these spherical harmonics.4

We assume the solution vector (α(x, t) ∈ R10) to be ordered as5

α =
(
α1

1, α
−2
2 , α1

3, α
3
3, α

0
0, α
−1
1 , α0

2, α
2
2, α
−3
3 , α−1

3

)T
6

Note that all the other values of αml that are not mentioned above are zero due to our assumption7

of a two dimensional physical space [34]. Under the assumed order for α, the flux matrices are8

given as9

A(1) =

(
04×4 Ã(
Ã
)T

06×6

)
10

11

where12

Ã =


1√
3

0 − 1√
15

1√
5

0 0

0 1√
5

0 0
√

3
14 − 1√

70

0 0
√

6
35 − 1√

70
0 0

0 0 0
√

3
14 0 0

13

14

From the explicit form of Ã given above it follows that rank(Ã) = 4. The Jacobian matrix along15

x2 is given as16

A(2) =



0 1√
5

0 0 0 0 0 0 0 0

1√
5

0 − 1√
70
−
√

3
14 0 0 0 0 0 0

0 − 1√
70

0 0 0 0 0 0 0 0

0 −
√

3
14 0 0 0 0 0 0 0 0

0 0 0 0 0 1√
3

0 0 0 0

0 0 0 0 1√
3

0 − 1√
15
− 1√

5
0 0

0 0 0 0 0 − 1√
15

0 0 0
√

6
35

0 0 0 0 0 − 1√
5

0 0
√

3
14

1√
70

0 0 0 0 0 0 0
√

3
14 0 0

0 0 0 0 0 0
√

6
35

1√
70

0 0



.17

18

Let An = A(1)n1(x) +A(2)n2(x). One can verify that An satisfies An = (On)TA(1)On with19

On =



cos(θ) 0 0 0 0 sin(θ) 0 0 0 0
0 cos(2θ) 0 0 0 0 0 − sin(2θ) 0 0
0 0 cos(θ) 0 0 0 0 0 0 sin(θ)
0 0 0 cos(3θ) 0 0 0 0 sin(3θ) 0
0 0 0 0 1 0 0 0 0 0

− sin(θ) 0 0 0 0 cos(θ) 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 sin(2θ) 0 0 0 0 0 cos(2θ) 0 0
0 0 0 − sin(3θ) 0 0 0 0 cos(3θ) 0
0 0 − sin(θ) 0 0 0 0 0 0 cos(θ)


20

21
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C SIMILARITIES TO THE GENERAL FRAMEWORK

where θ is the angle measured in the anti-clockwise sense between the normal vector n(x) and22

the x1 direction. The right hand side matrix (P ) is a diagonal negative semi-definite matrix1

with all the entries depending upon the material parameters [6, 13]. Thus P3 equations satisfy2

assumption 2.3

C. Similarities to the general framework4

1. Trivially follows from the definition of the flux’s Jacobians (27)5 (
A

(i)
M

)T
=

(∫
Rd

ΨMξi (ΨM )T f0dξ

)T

=

∫
Rd

ΨMξi (ΨM )T f0dξ = A
(i)
M .6

2. Orthogonality (24a) and recursion (24b) of Hermite polynomials provides [33]7 〈
Ψe
Mf0, ξ1 (Ψe

M )T f0

〉
K

= 0ΞMe ×ΞMe
,
〈

Ψo
Mf0, ξ1 (Ψo

M )T f0

〉
K

= 0ΞMo ×ΞMo
. (56)8

9

From the definition of A
(1)
M in (27) and the ordering ΨM =

(
(Ψo

M )T , (Ψe
M )T

)T
in defini-10

tion 3.3 we find11

A
(1)
M =


〈

Ψo
Mf0, ξ1 (Ψo

M )T f0

〉
K

〈
Ψo
Mf0, ξ1 (Ψe

M )T f0

〉
K〈

Ψe
Mf0, ξ1 (Ψo

M )T f0

〉
K

〈
Ψe
Mf0, ξ1 (Ψe

M )T f0

〉
K

 =

 0ΞMo ×ΞMo
A

(M,M)
Ψ(

A
(M,M)
Ψ

)T
0ΞMe ×ΞMe

12

where the last equality is a consequence of (56) and the definition of A
(M,M)
Ψ given in13

definition 3.4.14

3. From the definition of A
(M,M)
Ψ and A

(M,M−1)
ψ (definition 3.4), we conclude that15

A
(M,M)
Ψ =

(
A

(M,M−1)
Ψ , A

(M,M)
ψ

)
,16

where A
(M,M−1)
Ψ is a square invertible matrix [32]. This implies that A

(M,M)
Ψ has full rank17

and since ΞMo ≤ ΞMe we have rank(A
(M,M)
Ψ ) = ΞMo .18

4. From the definition of A
(i)
M (27) we find19

AnM =
d∑
i=1

A
(i)
Mn

(1)
i (x) =

∫
Rd

ΨM (ξ)ξin
(1)
i (ΨM (ξ))T f0(ξ)dξ,20

where n(1)(x) is the same as n(x) but relabelled for convenience. The normal vector21

n(1)(x) can be used to define a local coordinate system. Let the d mutually orthogo-22

nal axis of this coordinate system be represented by a set of d orthogonal unit vectors23

{n(1)(x), . . . , n(d)(x)} where n(i) ∈ Rd,∀i ∈ {1, 2, . . . , d}. In these local coordinates we24

represent the velocity through ξn ∈ Rd where ξni = ξjn
(i)
j . The velocity in Cartesian coor-25

dinates (ξ) can be related to the velocity in local coordinates (ξn) through an orthogonal26

rotation matrix On ∈ Rd×d27

Onξn = ξ.28

With the above relation, the expression for AnM can be simplified to29

AnM =

∫
Rd

ΨM (Onξn)ξn1 (ΨM (Onξn))T f0(Onξn)|det(On)|dξn30

=
(
ÔnM

)T
(∫

Rd
ΨM (ξn)ξn1 (ΨM (ξn))T f0(ξn)dξn

)
ÔnM ,31

32

34



where dξn represents a volume element in local coordinates and for the last equality we33

have used |det(On)|= 1 and f0(ξn) = f0(Onξn). For the last equality we have used the1

rotational property of ΨM (28). Since a change of notation does not influence an integral,2

we find3 ∫
Rd

ΨM (ξn)ξn1 (ΨM (ξn))T f0(ξn)dξn =

∫
Rd

ΨM (ξ)ξ1 (ΨM (ξ))T f0(ξ)dξ = A
(1)
M4

which then implies AnM =
(
ÔnM

)T
A

(1)
M ÔnM .5

5. Semi-negative definiteness of PM is a result of the semi-negative definiteness of Q (21) and6

the definition of PM (27): (ΛM (r))T PMΛM (r) = 1
Kn 〈r,Q(r)〉K ≤ 0, ∀ r ∈ K.7

D. Stability of weak kinetic boundary implementation8

Choosing φ = fhM (·, t, ·) in (40) and integrating by parts, we find9

1

2
∂t‖fhM (t)‖2X+

1

2

∮
∂Ωh

∫
Rd
ξini

(
fhM (t)

)2
f−1

0 dξds =
1

Kn

∫
Ωh

∫
Rd
fhM (t)Q(fhM (t))f−1

0 dξdx

+

∮
∂Ωh

∫
ξini<0

ξini

(
fhM (t)− fin(t)

)
fhM (t)f−1

0 dξds,

(57)10

where we assume that all integrals are exact. Trivially,11

−
∮
∂Ωh

∫
ξini>0

ξini

(
fhM (t)

)2
f−1

0 dξds ≤ 0, ∀ t ∈ [0, T ].12

Using the above inequality and the dissipation property of Q given in (21) in the estimate (57),13

we find14

∂t‖fhM (t)‖2X≤
∮
∂Ωh

∫
ξini<0

ξini

(
fhM (t)

)2
f−1

0 dξds− 2

∮
∂Ωh

∫
ξini<0

ξinifin(t)fhM (t)f−1
0 dξds15

=

∮
∂Ωh

∫
ξini<0

ξini

(
fhM (t)− fin(t)

)2
f−1

0 dξds︸ ︷︷ ︸
≤0

−
∮
∂Ωh

∫
ξini<0

ξini (fin(t))2 f−1
0 dξds,16

≤−
∮
∂Ωh

∫
ξini<0

ξini (fin(t))2 f−1
0 dξds.17

18

Integrating the above inequality over [0, T ] provides the result.19

E. Kinetic flux implementation20

Using the definition of Vh,M , we express fhM as21

fhM (x, t, ξ) = ΛM (fhM (x, t, ·)) ·ΨM (ξ)f0(ξ)22

where ΛM (fhM (x, t, ·)) ∈ Vh. Replacing the above expansion in (40), we find23 ∫
Ωh

φT∂tΛM (fhM (t))dx+
d∑
i=1

∫
Ωh

φTA
(i)
M ∂xiΛM (fhM (t))dx−

∫
Ωh

φTPMΛM (fhM (t))dx

=
1

2

∮
∂Ωh

φT (AnM −Dn
M )
(

ΛM (fhM (t))− ΛM (fin(t))
)
ds, ∀ φ ∈ Vh.

(58)24
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Performing integration-by-parts on every element of Ωh separately, we find25

d∑
i=1

∫
Ωh

φTA
(i)
M ∂xiΛM (fhM (t))dx =

∑
κ∈Ωh

d∑
i=1

∫
κ
φTA

(i)
M ∂xiΛM (fhM (t))dx1

=
∑
κ∈Ωh

(∮
∂κ
φTAnκM Λ

(κ,+)
M ds−

∫
κ

(∂xiφ)T A
(i)
MΛM (fhM (t))dx

)
.2

3

Continuity of functions in the approximation space Vh implies Λ
(κ,+)
M = Λ

(κ,−)
M which allows us4

to write5 ∮
∂κ
φTAnκM Λ

(κ,+)
M ds =

∮
∂κ
φT 1

2

(
AnκM

(
Λ

(κ,+)
M + Λ

(κ,−)
M

)
+Dnκ

M

(
Λ

(κ,+)
M − Λ

(κ,−)
M

))
︸ ︷︷ ︸

=F(Λ
(κ,+)
M ,Λ

(κ,−)
M ;nκ)

ds6

Using the above relation in (58) provides us with the result.7

F. Discrete Velocity Method8

All of our test cases involve a 2D physical space for which the linearised BE (19) reduces to9

∂tf +
2∑
i=1

ξi∂xif = Q(f). (59)10

11

All the macroscopic quantities in (20) can be recovered using the following projections of f along12

the ξ3 direction13

g =

∫
R
He0(ξ3)fdξ3, h =

∫
R
He2(ξ3)fdξ3,14

15

where Hei denotes a Hermite polynomial of i-th degree. We are interested in macroscopic16

quantities therefore we only solve for g and h that reduces the computational cost of solving17

(59). Testing (59) with He0 and He2 provides the governing equations for g and h18

∂tg +
2∑
i=1

ξi∂xig =

∫
R
He0Q(f)dξ3, ∂th+

2∑
i=1

ξi∂xih =

∫
R
He2Q(f)dξ3. (60)19

20

We solve both the above equations using a DVM described in the text.21

References

[1] Abdelmalik, M. and Brummelen, H. v. (2016). An entropy stable discontinuous Galerkin
finite-element moment method for the Boltzmann equation. Computers & Mathematics with
Applications, 72(8):1988 – 1999. Finite Elements in Flow Problems 2015.

[2] Abdelmalik, M. and Brummelen, H. v. (2017). Error estimation and adaptive moment
hierarchies for goal-oriented approximations of the Boltzmann equation. Computer Methods
in Applied Mechanics and Engineering, 325(Supplement C):219 – 239.

[3] Baranger, C., Claudel, J., Hérouard, N., and Mieussens, L. (2014). Locally refined discrete
velocity grids for stationary rarefied flow simulations. Journal of Computational Physics,
257:572 – 593.

36



REFERENCES

[4] Beckmann, A. F., Rana, A. S., Torrilhon, M., and Struchtrup, H. (2018). Evaporation
boundary conditions for the linear R13 equations based on the Onsager theory. Entropy,
20(9).

[5] Bird, G. A. (1995). Molecular gas dynamics and the direct simulation of gas flows. Oxford :
Clarendon Press, repr. (with corrections) edition.

[6] Brunner, T. A. and Holloway, J. P. (2005). Two-dimensional time dependent Riemann solvers
for neutron transport. Journal of Computational Physics, 210(1):386 – 399.

[7] Cai, Z., Fan, Y., and Li, R. (2014). Globally hyperbolic regularization of Grad’s moment
system. Communications on Pure and Applied Mathematics, 67(3):464–518.

[8] Cai, Z. and Li, R. (2010). Numerical regularized moment method of arbitrary order for
Boltzmann-BGK equation. SIAM Journal on Scientific Computing, 32(5):2875–2907.

[9] Cai, Z. and Torrilhon, M. (2017). Numerical simulation of microflows using moment methods
with linearized collision operator. Journal of Scientific Computing.

[10] Carpenter, M. H., Gottlieb, D., and Abarbanel, S. (1994). Time-stable boundary conditions
for finite-difference schemes solving hyperbolic systems: Methodology and application to high-
order compact schemes. Journal of Computational Physics, 111(2):220 – 236.

[11] Cercignani, C. (1988). The Boltzmann Equation and Its Applications. Springer, 67 edition.

[12] Fernández, D. C. D. R., Hicken, J. E., and Zingg, D. W. (2014). Review of summation-by-
parts operators with simultaneous-approximation-terms for the numerical solution of partial
differential equations. Computers and Fluids, 95:171 – 196.
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[39] Svärd, M., Carpenter, M. H., and Nordström, J. (2007). A stable high-order finite difference
scheme for the compressible Navier-Stokes equations, far-field boundary conditions. Journal
of Computational Physics, 225(1):1020 – 1038.
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