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Abstract

We define certain criteria, using the characteristic decomposition of the boundary con-

ditions and energy estimates, which a set of stable boundary conditions for a linear initial

boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use

these stability criteria to show the instability of the Maxwell boundary conditions proposed

by Grad[8]. We then recognise a special block structure of the moment equations which

arises due to the recursion relations and the orthogonality of the Hermite polynomials; the

block structure will help us in formulating stable boundary conditions for an arbitrary or-

der Hermite discretization of the Boltzmann equation. The formulation of stable boundary

conditions relies upon an Onsager matrix which will be constructed such that the newly

proposed boundary conditions stay close to the Maxwell boundary conditions at least in the

lower order moments.

1 Introduction

In gas dynamics, the rarefaction of a gas poses significant challenges. The ratio of the mean

free path to the macroscopic length scale of the domain, known as the Knudsen number, helps

us in describing the extent of rarefaction in a gas. Depending upon the range of the Knudsen

number, the flow regime of a gas can be classified as: the hydrodynamic regime (Kn ≤ 0.001),

the slip flow regime (0.001 ≤ Kn < 0.01), the transition regime (0.01 ≤ Kn < 10) and the free

molecular flow regime (10 ≤ Kn). The evolution of the phase density function for all the flow

regimes is appropriately described by the Boltzmann equation. There has been a significant

amount of development in the past decades towards developing numerical methods for solving

the Boltzmann equation. Direct Simulation Monte Carlo (DSMC) proves to be a method with

high fidelity for solving the Boltzmann equation, an extensive discussion can be found in [2].

But DSMC methods have been found to be expensive for flow regimes with Kn ≤ 1 due to the
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1 INTRODUCTION

obvious presence of a large number of particles and therefore there is a need to come up with

cheap solvers for flows in this regime.

The core idea of most of the methods, which appear as a substitute to Monte Carlo methods,

lies in projecting the phase density function onto a finite dimensional space; the Grad’s moment

equations proposed in [8], where the phase density function is expanded in terms of the tensor

valued Hermite polynomials, falls into this category. Since Grad discarded his own equations, not

much attention was payed to them initially. But recently Grad’s equations have been studied in

detail since it has been found that properties like loss of hyperbolicity, presence of sub-shocks etc.

can be overcome with the help of certain regularizations, see [3, 13, 25]. In the present work, we

will focus upon low Mach rarefied gas flows. Therefore we will linearise the Boltzmann equation

about a fixed ground state and then use a Hermite expansion, in the velocity space, to compute

the deviations of the distribution function from this ground state; such an approximation will

lead to set of linearised moment equations which are globally hyperbolic in nature [23].

Most realistic problems concerning gas dynamics involve an interaction between the gas and

its surrounding environment; one of the crucial one being the interaction between a gas and a

solid surface. Therefore one should endow a fluid model with appropriate boundary conditions.

An initial step towards providing boundary conditions for moment equations was already taken

in [8] where the Maxwell accommodation model was used to come up with Maxwell’s boundary

conditions(MBCs) for the Grad’s-13 moment equations. In [32], the MBCs were also derived for

the Regularized-13 equations(R13) which were then used to study certain benchmark problems.

The MBCs for R13 equations were used in [27] to study a low Mach number flow over a sphere;

the results were found to be promising as compared to those obtained from Stokes equations [1].

The use of MBCs was further extended to moment equations describing the flow of rarefied gas

mixtures; see [10] for a detailed discussion and the results therein. In [20], the MBCs were used

to compute a lid driven cavity flow using R13 equations and finite differences. In [9], the authors

have studied a plane Coutte flow using R13 equations equipped with MBCs. See [29] and the

references therein for a detailed discussion on boundary value problems arising from moment

equations. Despite being physically intuitive, the studies conducted in [19, 21, 33] have brought

out the physically inaccuracy of MBCs. In [31], the authors have discussed the instability of

MBCs and its influence upon the convergence of Discontinuous Galerkin schemes for curved

boundaries. The instability of MBCs motivates us to formulate stable boundary conditions for

an arbitrary order Hermite discretization of the Boltzmann equation.

Stability of boundary conditions has a significant role to play in the well-posedness of IBVPs.

The framework for well posedness of constant coefficient initial boundary value problems(IBVPs)

has been developed in [7, 14, 15, 18]. The theoretical framework for well-posedness, for symmetric

hyperbolic systems, usually relies upon the use of energy estimates which help in providing an

upper bound for the solution, of an IBVP, in terms of the given data. These energy estimates

were also used in [18] to formulate certain conditions which the boundary conditions must satisfy

in order to be well posed. Apart from analysing the well-posedness of continuous problems,

energy estimates have also been used in analysing the stability of numerical schemes; see [16, 31]

and references therein for greater details. Therefore the stability of boundary conditions becomes
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crucial to obtain acceptable results both on the continuous and the discrete level.

From the previous works it is clear that the higher order moment methods are required

in flow regimes which experience significant non-equilibrium; see [30] and [28] for a discussion

regarding the derivation and the convergence of higher order moment methods for boundary

value problems respectively. Moving along the same lines as [18], we will use energy estimates to

define the notion of stable boundary conditions. We will then use our stability criteria to study

the instability of MBCs. Further, we will recognise a special block structure for the moment

equations which will help us to formulate stable boundary conditions for the same. Similar to

[21] these boundary conditions will be given in terms of the Onsager matrix. Adopting the

methodology proposed in [21], we will then use the MBCs to derive an explicit expression for

the Onsager matrix.

2 Stability Criteria

Restricting ourselves to linear IBVPs, in the present section we will be defining the notion of

stable boundary conditions along with the neccesary and the sufficient conditions for a set of

boundary conditions to be stable. The energy estimate to be discussed in this section is closely

related to the well-posedness of an IBVP; see [7, 11, 12, 18] for details. A linear IBVP can be

given as

∂tα(x, t) +
d∑
i=1

A(i)∂xiα(x, t) =Pα(x, t), x ∈ Ω, t ≥ 0 (1a)

α(x, 0) =f(x), x ∈ Ω, t = 0 (1b)

Bα(x, t) =g(x, t), x ∈ ∂Ω, t ≥ 0 (1c)

where α ∈ Rm is the solution vector, A(i) ∈ Rm×m is a constant coefficient matrix which

will be assumed to be symmetric and the domain Ω ⊆ Rd is Lipschitz continuous and convex.

The matrix B ∈ Rp×m prescribes the boundary conditions, the exact form of which will be

discussed later and d is the total number of spatial dimensions. The initial condition f(x) and

the inhomogeneity of the boundary conditions g(x, t) is the given data of the problem; both f

and g will be considered to be infinitely differentiable i.e f ∈ [C∞(Ω)]m and g ∈ [C∞(Ω)]p. To

maintain coherence with the moment equations, which will be derived in the coming sections, we

will assume P ∈ Rm×m, which is also a constant coefficient matrix, to be negative semi-definite

i.e.

αTPα ≤ 0, α ∈ Rm. (2)

Generically speaking, the IBVP in (1a)-(1c) is well-posed if there exists a unique solution

which continuously depends upon the given data [7, 14]. Since the problem which we are

considering is linear in nature hence, if the solution exists then the continuous dependence of

it on the given data will ensure its uniqueness [18]. Thus, the IBVP given in (1a)-(1c) is well
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posed if (i) the solution to the IBVP exists and (ii) the solution is such that it is bounded by

the given data of the problem in some suitable norm. For the existence of the solution it is

necessary that we prescribe the correct number of boundary conditions which translates into

the matrix B, appearing in (1c), being of an appropriate size [7]. Let n = n(x) be a unit vector

which points out of the domain and is perpendicular to ∂Ω at the point x, then we can define

the flux matrix A(n) as

A(n) =
d∑
i=1

niA
(i) (3)

which will be symmetric. We will assume that as n varies along the whole boundary, the

eigenspectrum of A(n) does not change, this is in accordance with the rotational invariance

of the moment systems; see [17]. For the existence of a solution it is necessary that we only

prescribe a boundary condition to those characteristics which come into the domain (see [7] for

details); therefore, the number of rows of the matrix B(i.e. p) should be equal to the number of

negative eigenvalues of A(n) and rank(B) = p. Hence the assumption on the eigenspectrum of

A(n) ensures that the size of B remains the same for all the boundary points.

To ensure the uniqueness of the solution, we can now look into the following energy estimate

which can be obtained by multiplying (1a) by αT , integrating over the domain Ω and using

Gauss-theorem

1

2
∂t

∫
Ω
αTαdx +

1

2

∮
∂Ω

αTA(n)αds =

∫
Ω
αTPαdx ≤ 0, (∵ P ≤ 0). (4)

Due to the symmetricity of A(i), the entropy-entropy flux pair for (1a) can be recognised as

αTα and αTA(i)α respectively. Under the assumption of P being semi-negative definite, the

entropy flux across the boundary remains as the only source for the growth of the L2(Ω) norm

of the solution vector α (or the growth of the entropy functional). Hence, we can bound the

solution by the given data of the problem if we can bound the entropy flux as

H = αTA(n)α ≥ −λ(t)g(x, t)Tg(x, t), x ∈ ∂Ω (5)

where λ(t) is some scalar function independent of the solution and the given data of the problem.

Assuming that we can somehow ensure an inequality of the form (5), then using (4) we have

∂t‖α‖2≤ λ(t)

∮
∂Ω

g(x, t)Tg(x, t)ds, (6)

where ‖.‖ represents the standard L2(Ω) norm, which ensures the uniqueness of the solution

in case it exists. The afore-mentioned analysis shows that in order to obtain any reasonable

results for our IBVP we need careful modelling of the boundary conditions. It can be shown

that if we end up prescribing the wrong number of boundary conditions then the existence of

the solution will be endangered and on the other hand if the boundary conditions do not lead

to a bounded growth of the solution, in the sense of (6), then the uniqueness of the solution
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cannot be ensured. In the spirit of fulfilling the necessary conditions for the well-posedness of

our IBVP, we have the definition

Definition 2.1. A set of boundary conditions, Bα = g(x, t), for our IBVP given in (1a)-(1c)

will be called stable if it prescribes the correct number of boundary conditions and provides us

with a bound of the following type for the L2(Ω) norm of the solution α

∂t‖α‖2≤ λ(t)

∮
∂Ω

g(x, t)Tg(x, t)ds (7)

where λ(t) is some scalar function independent of the solution and the given data of the problem

and g(x, t) is the inhomogeneity arising from the boundary (see (1c)).

From characteristic splitting, we know that A(n) = XΛXT where X and Λ contain the

eigenvectors and the eigenvalues of A(n) respectively. Using X, we define

R0 = − (BX−)−1 BX0, R+ = − (BX−)−1 BX+, ĝ = (BX−)−1 g (8)

where X+/−/0 contain the eigenvectors corresponding to positive, negative and zero eigenvalues

respectively. We now formulate the following conditions, which are both necessary and sufficient,

for the stability of the boundary conditions in (1c)

Condition1 rank(B) = p and p should be equal to the number of negative eigenvalues of A(n).

Condition2 ker{A(n)} ⊆ ker{B}(or R0 = 0).

Condition3 RT
+Λ−R+ + Λ+ ≥ 0.

Condition4 RT
+Λ−ĝ ∈ range(Λ+ + RT

+Λ−R+).

A detailed derivation of these conditions can be found in subsection 7.1. Condition1 is a

consequence of the definition of stability itself and ensures that we fulfil the necessary conditions

for the existence of the solution. Condition2 to Condition4 ensure that we can bound the entropy

flux at the boundary by the given data leading to the uniqueness of the solution to the IBVP.

As per Condition4 , if we want to allow for any arbitrary inhomogeneity g then range(RT
+) ⊆

range(Λ+ + RT
+Λ−R+), which is always satisfied if Λ+ + RT

+Λ−R+ is s.p.d. Therefore, in [18]

the authors restrict Λ+ +RT
+Λ−R+ to be s.p.d for inhomogeneous boundary conditions (g 6= 0)

so as to obtain well-posedness of the IBVP. On the contrary, in the present work we only allow

for those inhomogeneities which satisfy Condition4 as a result of which RT
+Λ−R+ + Λ+ can

even be semi-definite. As we will see in the coming sections, the matrix B in (1c) is modelled

using some well defined physical process and remains the same for homogeneous(g = 0) and

inhomogeneous(g 6= 0) boundaries; therefore, the allowable inhomogeneities depend upon the

nature of the matrix RT
+Λ−R+ + Λ+(or B).

Remark 1. An interesting question is whether the framework which will be developed in the

present work can be easily extended to non-linear systems or not. Though even for non-linear

systems it is crucial that we prescribe boundary conditions to only those characteristics which
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come into the domain but the bound in (7) does not guarantee the uniqueness of the solution.

Therefore a formulation of boundary conditions, for non-linear problems, based upon the criteria

presented in Definition 2.1 might not provide us with a unique solution.

3 The Boltzmann Equation

We will now restrict ourselves to a kinetic equation which is one dimensional in the physical

and the velocity space. In the present setting, the Boltzmann equation, on a bounded position

domain, is given as

∂tf + ξ∂xf = Q(f, f), (x, ξ, t) ∈ [x(−), x(+)]× R× [0, T ]

f(x, ξ, 0) = fI(x, ξ), x ∈ [x(−), x(+)], t = 0
(9)

where f = f(x, ξ, t) defines the phase density functional and fI is some suitable initial condition;

boundary conditions for (9) will be discussed later. The operator Q(f, f) is such that it only

vanishes under equilibrium i.e. Q(fM, fM) = 0 where fM is the Maxwell-Boltzmann distribution

function given as

fM(ξ; ρ, v, θ) =
ρ(t, x)√
2πθ(t, x)

exp

(
−(ξ − v(t, x))2

2θ(t, x)

)
(10)

with ρ, v and θ being the density, velocity and temperature (in energy units) respectively and are

defined with respect to f as ρ =
∫
R fdξ, ρv =

∫
R ξfdξ and ρv2 + ρθ =

∫
R ξ

2fdξ. In the present

work, we are concerned with flow states which correspond to very low Mach number regimes.

So, in terms of the distribution function, we are looking for perturbations of f(x, ξ, t) around the

global Maxwellian f0 = fM(ξ; ρ0, 0, θ0) where ρ0 and θ0 are ground states which are independent

of x and t. To obtain an equation for the perturbation of f about f0, we will linearise f through

the relation f ≈ f0 + εf̃ with ε being some smallness parameter. Substituting the linearisation

into the Boltzmann equation (9) and using ∂tf0 = ∂xf0 = 0, we obtain the linearised form of

the Boltzmann equation upto O(ε)

∂tf̃ + ξ∂xf̃ = Q̃(f̃), (x, ξ, t) ∈ [x(−), x(+)]× R× [0, T ]

f̃(x, ξ, 0) = f̃I(x, ξ), x ∈ [x(−), x(+)], t = 0
(11)

where Q̃(f̃) is the linearisation of Q(f, f) about f0 and has the property [6, 23]∫
R
f̃f−1

0 Q̃(f̃)dξ ≤ 0 (12)

which will prove to be helpful during the discussion of stable boundary conditions. The initial

condition f̃I is the linearisation of fI about f0 upto O(ε), we will assume f̃I to be in L2(R, f−1
0 ).
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3.1 The Maxwell Accommodation Model

3.1 The Maxwell Accommodation Model

Using the linearised Boltzmann equation given in (11), we would like to study a fluid flow inside

a bounded position domain i.e. x ∈ [x(−), x(+)] such that at both x = x(−) and x = x(+) we

have solid stationary impenetrable walls. Thus the gas in our bounded domain can only be

excited through a temperature difference between the two confining walls. It is obvious that to

study such a problem we need to equip our kinetic equation in (11) with appropriate boundary

conditions.

As is clear from (11), the linearised Boltzmann equation is hyperbolic in nature with the

advection speed being equal to the molecular velocity ξ. Therefore, we simply need to prescribe

a value to the distribution function at the points in the phase space with positive and negative

velocities at x = x(−) and x = x(+) respectively. Assuming the scattering at the boundary to

be modelled by the Maxwell accommodation model, the boundary conditions are then given by

f̃(x(±), ξ, t) =χf̃
(±)
M (ξ) + (1− χ)f̃(x(±),−ξ, t), ±ξ < 0. (13)

The functions f̃
(±)
M (ξ) appearing in the boundary conditions are the deviations of fM from f0,

upto O(ε), at the left and the right wall respectively and are given as

f̃
(±)
M (ξ) = f0

(
ρ̃(±)

ρ0
+
θ̃(±)

2θ0

(
ξ2

θ0
− 1

))
, x = x(±) (14)

where ρ̃(±) and θ̃(±) are the deviations of ρ and θ from the reference states ρ0 and θ0 upto

O(ε). The factor χ ∈ [0, 1] is the accommodation coefficient and determines the fraction of the

molecules which are fully accommodated at the walls; the temperatures of the walls, θ̃(±), are

the given data of the problem but the densities, ρ̃(±), are determined such that the relative

velocity of the gas in the direction normal to the wall remains zero.

3.2 Stability of the Maxwell Accommodation Model

It is crucial to discuss whether the Maxwell accommodation model given by (13) is stable or

not for the linearised Boltzmann equation (11). Because if the Maxwell accommodation model

is itself unstable then, we cannot expect to obtain a stable set of boundary conditions from it

for our moment system. For the stability of the Maxwell accommodation model, we recall the

following results from [23]; where for simplicity χ and θ̃(±) were taken to be 1 and 0 respectively.

Multiplying the linearised Boltzmann equation (11) with f̃f−1
0 and integrating with respect

to ξ and x, we obtain
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1

2
∂t

∫ x(+)

x(−)

∫
R
f̃2f−1

0 dξdx+
1

2

[∫
R
f̃2f−1

0 ξdξ

]
x=x(+)

−1

2

[∫
R
f̃2f−1

0 ξdξ

]
x=x(−)

=

∫ x(+)

x(−)

∫
R
f̃f−1

0 Q̃(f̃)dξdx ≤ 0

(15)

where we have used (12). For the linearised Boltzmann equation the inequality can be looked

upon as an energy estimate, similar to (4), with
∫
R f̃

2f−1
0 dξ and

∫
R f̃

2f−1
0 ξdξ corresponding to

the entropy and the entropy flux respectively. Due to the temperatures of the walls being zero,

the inhomogeneities arising from the walls are absent which is equivalent to g = 0 in (1c). The

Maxwell accommodation model will be stable, in the sense of Definition 2.1, if we can obtain

(g = 0 in (6))

∂t

∫ x(+)

x(−)

∫
R
f̃2f−1

0 dξdx ≤ 0 (16)

which is equivalent to requiring the positivity of the entropy flux across the boundary (H ≥ 0

in (5) with g = 0) i.e.

±
∫
R
f̃2f−1

0 ξdξ ≥ 0, x = x(±). (17)

From the work done in [23], we know that both the above inequalities are satisfied which in turn

provides us with the stability of the boundary conditions in (13).

4 Hermite discretization

Motivated from the work done in [8], in the present work we will discretize the linearised Boltz-

mann equation, in the velocity space, using the Hermite expansion in the following way

f̃ ≈ f̃h =

m−1∑
i=0

αi(x, t)Hei

(
ξ√
θ0

)
f0 (18)

where, m can be looked upon as an indicator of our resolution in the velocity space. The

Hermite approximation was shown to converge in [23], to the solution of the linearised Boltzmann

equation, for the boundary value problem we are interested in. In all the coming sections

〈f, g〉γ =

∫
γ
fgdξ, 〈f, g〉(γ,w) =

∫
γ
fgwdξ (19)

The Hermite polynomials, Hei(ξ), appearing in our approximation enjoy the following well-

known but crucial properties
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Orthogonality :

∫
R
Hei

(
ξ√
θ0

)
Hej

(
ξ√
θ0

)
f0dξ = δijρ0 (20a)

Recursion :
√
i+ 1Hei+1

(
ξ√
θ0

)
+
√
iHei−1

(
ξ√
θ0

)
=

ξ√
θ0
Hei

(
ξ√
θ0

)
(20b)

For all the coming discussions, we will define Hi as Hi(ξ) = Hei
(
ξ/
√
θ0

)
. Due to the orthogo-

nality of the basis functions (20a), the coefficients αi’s appearing in our Hermite discretization

(18) can be trivially given as

ρ0αi =
〈
Hi, f̃h

〉
R
. (21)

The first few coefficients αi’s appearing in (18) are related to the deviations of the field variables(ρ̃, ṽ

and θ̃), from their respective ground states(ρ0, v0 and θ0), through the relations

α0 =
ρ̃

ρ0
, α1 =

ṽ√
θ0
, α2 =

θ̃√
2θ0

. (22)

In order to develop tools necessary to identify a special block structure of the moment equations,

we would like to divide the set of expansion coefficients (or moments) into even, αo, and odd,

αe, coefficients in the following way

ρ0 (αe)i = 〈H2i, f̃h〉R, i ∈ {0, . . . (ne − 1)} (23a)

ρ0 (αo)i = 〈H2i+1, f̃h〉R, i ∈ {0, . . . (no − 1)} (23b)

where no and ne represent the total number of odd and even moments respectively. The variables

no and ne depend upon the value of m (the total number of moments)

ne =

m+1
2 , m is odd

m
2 , m is even

, no =

m−1
2 , m is odd

m
2 , m is even.

(24)

Clearly, no and ne are such that no + ne = m. From (24), one can see that the value of ne is

either equal to no or greater than no by one.

4.1 The Moment System

For convenience, we will non-dimensionalise x and t as x̂ = x
L and t̂ = t

√
θ0
L respectively where,

L is some appropriately defined length scale and θ0 is the reference temperature in energy

units. In order to derive the linearised moment equations, we multiply the linearised Boltzmann

equation by the scaled Hermite polynomials (Hi), integrate the resulting expression over the

entire velocity space and replace f̃ by f̃h to obtain
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4 HERMITE DISCRETIZATION

∂t̂

(
αo

αe

)
︸ ︷︷ ︸

α

+

(
0 Aoe

Aeo 0

)
︸ ︷︷ ︸

A(1)

∂x̂

(
αo

αe

)
= P

(
αo

αe

)
, (x, t) ∈ [x(−), x(+)]× [0, T ]

ρ0αi(x, 0) =
〈
Hi, f̃I

〉
R
, x ∈ [x(−), x(+)], t = 0

(25)

where α contains all the moments and has been assumed to be ordered as α = (αo,αe)
T with the

odd (αo) and the even (αe) moments defined in (23b) and (23a) respectively. A set of boundary

conditions for the moment equations will be discussed later. The matrix block Aoe ∈ Rno×ne ,
appearing in the flux matrix, can be explicitly given as

Aoeij =
1

ρ0

√
θ0
〈H2i+1, H2jξ〉(R,f0) =

(
δi+1,j

√
2i+ 2 + δi,j

√
2i+ 1

)
. (26)

Additionally, Aeo = (Aoe)T which implies that the moment system is symmetric hyperbolic.

The block structure given in (25) has also been identified in [22] for semiconductor transport

equation and shows that in the transport part of the moment equations (25), the odd moments

are coupled with the even ones and vice versa. The matrix P appearing in (25) models the

contribution from Q̃(f̃) and is given as

Pij =
L

ρ0

√
θ0

〈
Hi, Q̃ (Hjf0)

〉
R
. (27)

Moreover, using (12) we have αiPijαj ≤ 0 for all α ∈ Rm which shows the negative semi-

definiteness of P. The flux matrix A(n), defined in (3), for our moment system is given as

A(n) = ±A(1) = ±

(
0 Aoe

(Aoe)T 0

)
, x = x(±) (28)

and shows a particular block structure which will be helpful in formulating boundary conditions.

We would now like to find an equivalence between the moment system and the generic system

introduced in (1a); this will help us in studying the stability of the boundary conditions to be

discussed shortly. Let us first define the following for convenience

Definition 4.1. A square matrix A ∈ Rm×m will be called Onsager compatible, if it has the

following properties

(i) The matrix A is structured as

A =

(
0 A1

(A1)T 0

)
(29)

with A1 ∈ Rp×q such that p + q = m and p ≤ q. Note that in such a case, A will be

symmetric.

(ii) All the rows of the matrix A1 are linearly independent or rank(A1) = p.
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4.1 The Moment System

For all the Onsager Compatible matrices, we have

Lemma 4.1. Let a matrix C be Onsager compatible with the same structure as that given in

(29), then it has the following properties

Property1 The ker{C} is given as

ker{C} = span

{(
0

ker{C1}

)}
. (30)

Property2 The eigenspectrum of C is symmetric about the origin.

Property3 The number of negative eigenvalues of C are equal to p.

Proof. See subsection 7.2.

We will now show that A(1) appearing in (25) is Onsager Compatible.

Lemma 4.2. The flux matrix A(1) appearing in (25) is Onsager compatible.

Proof. See subsection 7.3.

Due to Lemma 4.2 and (28), the flux matrix A(n) is also Onsager Compatible and will have

an eigenspectrum which will be the same at x = x(±) with the number of negative eigenvalues

being equal to no. The symmetricity of A(1), negative semi-definiteness of P and the nature of

the eigenspectrum of A(n) shows that our moment system is equivalent to the generic system

introduced in (1a) and therefore Condition1 to Condition4 can be used to formulate stable

boundary conditions for the same. Using the nature of the eigenspectrum of A(n), we can

complete our description of the IBVP by formally prescribing the boundary conditions through

the relation

αo = Mαe + g or (I,−M)︸ ︷︷ ︸
B

α = g, x = x(±), (31)

where M ∈ Rno×ne , B ∈ Rno×m and g ∈ Rno are unknown. It trivially follows that rank(B) = no

which, along with the eigenspectrum of A(n), shows that the boundary conditions in (31) satisfy

Condition1 required for stability. We note that due to the structure of B in (31) and Property1

of A(n), Condition2 is equivalent to requiring

ker{Aoe} ⊆ ker{M} (32)

where Aoe is as defined in (26). We would now like to find M and g such that we can have a

bound of the type (7) for our IBVP given in (25) and (31).

11



4 HERMITE DISCRETIZATION

4.2 Maxwell Boundary Conditions

We will first look into one of the ways of finding an explicit M and g appearing in (31). The

derivation of MBCs for the moment equations, from the Maxwell accommodation model, is

based upon the assumption of continuity of odd fluxes. The idea of assuming the continuity

of all the odd fluxes near the wall was first developed by Grad[8] and was motivated by his

study conducted on specular walls, χ = 0 in (13). For this particular case he noticed that only

the continuity of odd fluxes led to non-trivial boundary conditions; he then simply extended

his observation to more general walls (χ ∈ [0, 1]). Unfortunately, as we will see in the coming

discussion, the continuity of odd fluxes leads to unstable boundary conditions. The continuity

of odd fluxes reads [8, 24]

1

2
〈H2i+1, f̃

o
h〉R =± β

[
〈H2i+1, f̃

e
h〉R+ − 〈H2i+1, f̃

(±)
M 〉R+

]
, i ∈ {0, . . . , no − 1} (33)

where f̃
(±)
M is as given in (13) with f̃oh and f̃eh representing the odd and the even parts of f̃h,

with respect to ξ, respectively. Using the definition of f̃
(±)
M , we can further simplify (33)

1

2
〈H2i+1, f̃

o
h〉R =± β

[
〈H2i+1, f̃

e
h〉R+ − ρ̃(±)

ρ0
〈H2i+1, H0〉(R+,f0)

− θ̃(±)

√
2θ0

〈H2i+1, H2〉(R+,f0)

]
,

(
with β =

χ

2− χ

)
, x = x(±)

(34)

As was discussed previously, the walls which bound the domain have been considered to be

stationary and impenetrable which provides us with α1 = 0 at both the boundaries. Substituting

i = 0 in (34) and using the restriction on α1 for no penetration of the gas across the wall, we

can obtain an expression for ρ̃(±)

ρ̃(±)

ρ0
=

1

〈H1, H0〉(R+,f0)

[
〈H1, f̃

e
h〉R+ − 〈H1, H2〉(R+,f0)

θ̃(±)

√
2θ0

]
. (35)

By substituting the expression for ρ̃(±) into (34), we can write the MBCs in a matrix vector

product form as

αo = ±2βM(mbc)αe ± g(±), x = x(±) (36)

where the matrix M(mbc) ∈ Rno×ne and is independent of the accommodation coefficient χ. In

tensorial form, M(mbc) is given as

M
(mbc)
ij =

1

ρ0

[
〈H2i+1, H2j〉(R+,f0) − 〈H2i+1, H0〉(R+,f0)

〈H1, H2j〉(R+,f0)

〈H1, H0〉(R+,f0)

]
. (37)

The vectors g(±) ∈ Rno are the inhomogeneities arising from the walls and are given as

12



4.3 Instability of MBCs

g
(±)
i =


0, i = 0(√

2β
˜
θ(±)

θ0ρ0

)[
〈H2i+1,H0〉(R+,f0)〈H1,H2〉(R+,f0)

〈H1,H0〉(R+,f0)
− 〈H2i+1, H2〉(R+,f0)

]
, i ≥ 1

. (38)

From (36), the boundary matrix B and M and the inhomogeneity g appearing in (31) can be

identified as

M = ±2βM(mbc), B(mbc) =
(
I,∓2βM(mbc)

)
, g = ±g(±), x = x(±) (39)

which provides us with an explicit set of boundary conditions for our moment system. Similar

to the stability analysis of the Maxwell accommodation model, discussed earlier, we would like

to know whether the MBCs are stable in the sense of Definition 2.1; we will discuss this now in

more detail.

4.3 Instability of MBCs

As was discussed previously, a set of boundary conditions of the form (31) satisfy Condition1 ;

therefore, MBCs in (36) fulfil Condition1 . From numerical investigation we have found that for

all the moment systems, upto m = 50, in which ne 6= no, the MBCs do not satisfy Condition2

and are thus unstable; whereas for systems in which ne = no, MBCs are stable. The reason

for MBCs being stable for moment systems with no = ne will become apparent in the coming

sections. A proof for the instability of the MBCs in the case of ne 6= no is beyond the scope of

the present article but we will provide the following example to demonstrate our claim.

Example 1. Let us consider a case which corresponds to m = 5 in (18). For such a system, the

list of variables and the flux matrix (A(1)) can be given as

α5 = (α1, α3, α0, α2, α4) , A
(1)
5 =


0 0 1

√
2 0

0 0 0
√

3 2

1 0 0 0 0√
2
√

3 0 0 0

0 2 0 0 0

 . (40)

The kernel of the flux matrix and its eigenspectrum are given as

ker{A(1)
5 } = κ

(
0, 0, 2

√
2

3
,− 2√

3
, 1

)T
(with κ ∈ R) (41)

λ(A
(1)
5 ) =

(
±
√√

10 + 5,±
√√

10 + 5, 0

)
. (42)

The MBCs for this particular system are given by

13



5 ONSAGER BOUNDARY CONDITIONS

 1 0 0 0 0

0 1 0 ∓2β
√

2
3π ∓2β

3

√
2
π


︸ ︷︷ ︸

B
(mbc)
5

α5 = ±

 0

2β
√

1
3π

˜
θ(±)

θ0


︸ ︷︷ ︸

g
(±)
5

, x = x(±). (43)

Considering the eigenspectrum of the flux matrix given in (42) and the entries of the boundary

matrix B
(mbc)
5 , it is clear that the MBCs for the present moment system satisfy Condition1 .

Checking for Condition2 , we find

‖B(mbc)
5 ker{A(1)

5 }‖l2=
2
√

2|κ|
3
√
π
, κ 6= 0, x = x(±). (44)

Clearly, ‖B(mbc)
5 ker{A(1)

5 }‖l2 6= 0 for x = x(±) which shows the instability of the MBCs.

Remark 2. Considering the instability of MBCs it seems reasonable to only consider those

moment systems in which no = ne but it is crucial to remind oneself that such a moment system

does not exist in multi-dimensions and therefore it is important to fix the boundary conditions

for moment systems with no 6= ne.

5 Onsager Boundary Conditions

After the discussion of the previous section, we concluded that the matrix M(mbc) does not

satisfy (32) and thus the MBCs are unstable for a large variety of moment equations. This

motivates us to come up with a set of stable boundary conditions for which we will exploit the

Onsager Compatibility of the flux matrix A(n) given in (28); similar to the work done in [21, 26],

we will call these the Onsager boundary conditions (OBCs). Before looking into the moment

equations specifically, we would like to develop a set of general OBCs for all those symmetric

hyperbolic systems which have an Onsager Compatible flux matrix; an extension to moment

equations will then follow in a straightforward fashion.

Theorem 5.1. Let the flux matrix, corresponding to a general symmetric hyperbolic system

(1a), A(n) ∈ Rm×m defined in (3) be Onsager compatible along the whole boundary with

A(n) =

(
0 A∗n

(A∗n)T 0

)
, x ∈ ∂Ω (45)

where A∗n ∈ Rp×q and p ≤ q. Also, let the solution vector α to be structured as

α =

(
αp

αq

)
(46)

where αp ∈ Rp and αq ∈ Rq. At the boundary, let αp and αq be related as

14



5.1 OBCs for Moment Equations

αp = Mαq + g = LA∗nαq + g or (I,−M)︸ ︷︷ ︸
B

α = g, x ∈ ∂Ω (47)

where L ∈ Rp×p is a constant symmetric positive semi-definite matrix, M ∈ Rp×q and g ∈
range(L) is the inhomogeneity arising from the boundary. Then, the boundary conditions in

(47) are stable in the sense of Definition 2.1.

Proof. See subsection 7.4.

We showed previously that Condition1 to Condition4 are both necessary and sufficient for

a set of boundary conditions to be stable. Since, the general OBCs given by (47) are stable this

immediately implies that they satisfy the stability conditions for hyperbolic systems which have

an Onsager Compatible flux matrix.

5.1 OBCs for Moment Equations

The flux matrix A(n) given in (28) is Onsager Compatible at x = x(±) and therefore we can use

the framework developed in Theorem 5.1 to formulate the OBCs for our moment system. By

comparing the moment system and the flux matrix A(n), given in (25) and (28) respectively,

with the general formulation developed in Theorem 5.1 we find

A∗n = ±Aoe, αp = αo, αq = αe, g = ±g(±), x = x(±) (48)

where αo and αe are the odd and the even moments defined in (23b) and (23a) respectively and

g(±) is as defined in (38). Using (48) in the general formulation (47), the OBCs for our moment

system are given as

αo = ±LAoeαe ± g(±), x = x(±) (49)

where L is an unknown symmetric positive semi definite matrix; similar to [21, 26], we will call

this matrix the Onsager matrix. We note that for (49) to be stable we require g(±) ∈ range(L),

this can only be shown after we have formulated an explicit expression for L. The whole

methodology which follows can be summarised as

Step1 We know that the MBCs satisfy Condition1 but not Condition2 ; therefore, we will first

transform M(mbc) into M(mbc,∗) such that M(mbc,∗) satisfies (32). Then, M(mbc,∗) will be

row equivalent with Aoe i.e. it could be expressed as

2βM(mbc,∗) = LAoe (50)

where L could be any matrix not necessarily symmetric positive definite.
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5 ONSAGER BOUNDARY CONDITIONS

Step2 We will then show that L obtained through Step1 is indeed symmetric positive semi-

definite and is therefore the required Onsager matrix.

Step3 From the Onsager matrix obtained from Step2 , we will show that g(±) ∈ range(L).

We will now discuss the above steps in more technical details. For further analysis, we will split

Aoe and M(mbc) as

Aoe =
(
Âoe, Ãoe

)
, M(mbc) =

(
M̂(mbc), M̃(mbc)

)
(51)

where Âoe, M̂(mbc) ∈ Rno×(ne−1) and Ãoe, M̃(mbc) ∈ Rno . The invertibility of Âoe, which follows

from (80), shows that ker{Aoe} = span{aoe} where

aoe =

(Âoe
)−1

Ãoe

−1

 . (52)

From the null-space of Aoe it is clear that a transformation of M̃(mbc) will be enough to ensure

that aoe will belong to ker{M(mbc,∗)} and we do not need to disturb the coefficients of M̂(mbc);

therefore, the following structure for M(mbc,∗) will be sufficient to proceed with our construction

of the Onsager matrix

M(mbc,∗) =
(
M̂(mbc), M̃(mbc,∗)

)
(53)

where M̃(mbc,∗) = M̂(mbc)
(
Âoe

)−1
Ãoe which can be obtained by requiring M(mbc,∗)aoe = 0.

Using M̃(mbc,∗) we obtain M(mbc,∗) = M̂(mbc)
(
Âoe

)−1
Aoe which leads to

L = 2βM̂(mbc)
(
Âoe

)−1
. (54)

with the help of (50). We will now show that L is indeed symmetric positive semi definite .

Theorem 5.2. The matrix L given by (54) is symmetric positive semi-definite.

Proof. See subsection 7.5.

With the Onsager matrix L given by (54), we have an explicit set of OBCs from (49). But the

stability of the OBCs can only be assured once we have completed Step3 ; hence, we have the

result

Lemma 5.1. The inhomogeneity g(±) given by (38) is such that g(±) ∈ range(L) where L is

given by (54).

Proof. See subsection 7.6.

16



5.1 OBCs for Moment Equations

With Lemma 5.1, we have completed our formulation of the OBCs. By replacing L from

(54) into (49), we summarise the OBCs for the moment system through the relation

αo = ±2βM(obc)αe ± g(±), x = x(±) (55)

with M(obc) given by

M(obc) = M̂(mbc)
(
Âoe

)−1
Aoe. (56)

The matrix M and B(obc), appearing in (31), can now be identified as

M = ±2βM(obc), B(obc) =
(
I,∓2βM(obc)

)
, x = x(±). (57)

The explicit formulation of boundary conditions is similar for different values of m (18). Hence,

we present the OBCs corresponding to m = 5 by revisiting the example presented in subsec-

tion 4.3.

Example 2. Consider the moment system corresponding to m = 5 in (18). The solution vector

α5, the flux matrix A
(1)
5 and the boundary matrix B

(mbc)
5 corresponding to this system have

been given in (40) and (43); it is trivial to see that the flux matrix A
(1)
5 is Onsager compatible

and hence we can formulate a set of stable OBCs for the present moment system. Following

the splitting of the boundary matrix and the flux matrix given in (51), we obtain the following

expression for M̂
(mbc)
5 and Âoe

5

M̂
(mbc)
5 =

 0 0

0 2
√

2
3π

 , Âoe
5 =

(
1
√

2

0
√

3

)
. (58)

Using the formulae for the Onsager matrix L from (54), we obtain

L5 = M̂
(mbc)
5

(
Âoe

5

)−1
=

 0 0

0
2β

√
2
π

3

 . (59)

One can now check that L5 is symmetric positive semi-definite and g
(±)
5 , defined in (43), is in

the range of L5. Therefore, the following set of boundary conditions are stable for the present

moment system

α5
o = ±L5A

oe
5 α5

e ± g
(±)
5 , x = x(±) (60)

where α5
o ∈ R2 and α5

e ∈ R3 are given as α5
o = (α1, α3), α5

e = (α0, α2, α4) and the matrix

Aoe
5 ∈ R2×3 is the upper right block of A

(1)
5 defined in (40). The set of OBCs given in (60) can

also be written as
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5 ONSAGER BOUNDARY CONDITIONS

 1 0 0 0 0

0 1 0 ∓2β
√

2
3π ∓4β

3

√
2
π


︸ ︷︷ ︸

B
(obc)
5

α5 = ±g
(±)
5 , x = x(±). (61)

Comparing the Onsager boundary matrix B
(obc)
5 with B

(mbc)
5 given in (43), we find that the

underlined term, which corresponds to the highest moment in the system, is the one which

differs between the two. Thus, by using the formulation presented in the earlier sections, we

have stabilised the boundary conditions given in (43) by altering just the coefficient of the highest

order moment appearing in the boundary conditions.

Remark 3. For the case when no = ne, we will have

Aoe = Âoe, M(mbc) = M̂(mbc) (62)

and therefore ker{Aoe} = ∅ . Which means that Condition2 will be automatically satisfied

since the empty set is a subset of every set. Using (62) in (56) we obtain M(obc) = M(mbc).

which shows that the MBCs are stable for all moment systems which have no = ne.

Remark 4. A non-trivial normal velocity of the walls changes the number of characteristics which

come into the domain; see [5]. Therefore we cannot simply extend the boundary conditions

presented in (55), for moving walls, by replacing g
(±)
0 in (38) by v(±), with v(±) representing the

normal velocity of the wall. If we do so then we will end up prescribing the incorrect number of

boundary conditions. We leave the formulation of stable boundary conditions for moving walls

as a part of the future work.

5.2 Relation to Discrete Velocity Models

We will now compare the OBCs to the boundary implementation presented in [23] where the

authors diagonalize the flux matrix appearing in (25) (A(1)) with the help of m Gauss-Hermite

quadrature points in the velocity space, {zi}, using which the moment system in (25) can be

written as

∂tf̃h(x, zi, t) + zi∂xf̃h(x, zi, t) = Q̃h(f̃h(x, zi, t), f̃h(x, zi, t)), i ∈ {0, . . .m− 1} (63)

where Q̃h represents the discrete version of the linearised collision operator Q̃ computed with the

help of a quadrature defined on the grid points {zi}. Writing the moment system as a discrete

velocity scheme makes the implementation of the boundary conditions very straightforward

due to the following reasons. Consider the boundary x = x(±), then, similar to the boundary

conditions for the Boltzmann equation (13), we need to prescribe a value to the distribution

function for all those grid points(zi) which lie in the half space ±ξ < 0. This translates into
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5.3 Discussion

f̃h(x(±), zi, t) = χf
(±)
M (zi) + (1− χ)f̃h(x(±),−zi, t), ±zi < 0 (64)

with f
(±)
M as defined in (14). Plugging in the Hermite discretization from (18) into the above

relation, we can come up with the desired number of relations for the coefficients (αi); the

boundary conditions given by (64) were also shown to be stable in [23].

From the discussion done in section 2, it is clear that a boundary implementation of the type

(64), for the moment system, is only possible if the values of the distribution function at the

gauss points corresponding to ±zi < 0 have a one-to-one mapping to the characteristic variables

which come into the domain (W−). Such a mapping, for moment systems arising from a multi-

dimensional velocity space and based upon Gauss-Hermite grid points, exists [23]. But for the

approximation of the distribution function based upon spherical harmonics, see [3, 5, 8, 28], the

existence of such a mapping is not very clear due to the following reasons (i) the maximum

degree of the Hermite polynomials in each of the spatial directions is equal, as a result of which,

we atleast need n3 (n ∈ N) Gauss-Hermite quadrature points in the velocity space to perform

all the velocity space integrals appearing in the moment system exactly. But the number of

moment variables (and the characteristic variables) for these moment equations are not equal

to n3 [30]and (ii) the rotational invariance of the moment systems prohibits the existence of an

underlying discrete velocity grid; for the Grad’s-20 moment system, a possible reason why (64)

cannot be used for prescribing boundary conditions has been shown in subsection 7.7.

On the other hand, the formulation presented in the present work is completely independent

of the underlying discrete velocity grid. Moreover, a preliminary computational analysis shows

that even for moment systems which are based upon a spherical harmonic approximation of the

distribution function, the flux matrix is Onsager compatible. Therefore, the framework presented

in this article can be easily extended to include multi-dimensional moment systems.

5.3 Discussion

We find the following similarities between the entropy flux at the boundary corresponding to

the true solution of the Boltzmann equation and the one we obtain through the approximation

f̃h. For g(±) = 0 in (55), the entropy flux across the boundary for our moment system is given

by

±αTA(1)α =±
∫
ξf̃2
hf
−1
0 dξ, x = x(±)

=± 2αT
o Aoeαe = 2 (Aoeαe)

T LAoeαe ≥ 0, (∵ L ≥ 0)

(65)

which can be looked upon as the discretized version of (17), in the velocity space, with f̃ replaced

by its approximation f̃h. Therefore by constructing OBCs we have mimicked the behaviour of

the true entropy flux of the linearised Boltzmann equation at the boundary, though in doing so

we had to give up the MBCs.
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5 ONSAGER BOUNDARY CONDITIONS

Using the OBCs, we can better understand the instability which arises due to the MBCs.

The MBCs in (36), assuming g(±) = 0 and (αe)ne−1 begin the last component of αe, can be

written as

αo =±
[
LAoeαe + 2β

(
M̃(mbc) − M̃(mbc,∗)

)
(αe)ne−1

]
, x = x(±)

=±
[
LAoeαe + ∆M̃(mbc)(αe)ne−1

]
,
(

with ∆M̃(mbc) = 2β
(
M̃(mbc) − M̃(mbc,∗)

)) (66)

where L is given by (54), M̃(mbc) and M̃(mbc,∗) are the vectors appearing in (51) and (50)

respectively. The fact that ∆M̃(mbc) 6= 0 is the reason why the MBCs do not satisfy Condition2 .

Using (66), the entropy flux across the boundary, H, corresponding to the moment system can

be written as

1

2
H =

1

2
αTA(n)α =±αT

o Aoeαe, x = x(±)

= (Aoeαe)
T LAoeαe + (αe)ne−1

(
∆M(mbc)

)T
Aoeαe

≥ (αe)ne−1

(
∆M(mbc)

)T
Aoeαe, (∵ L ≥ 0)

(67)

Replacing the bound on the entropy flux into the energy estimate (4), we obtain

∂t‖α‖2≤ −2 (αe)ne−1

(
∆M(mbc)

)T
Aoeαe (68)

which shows that the growth of the L2(Ω) norm of the solution can only be bounded by the

solution itself implying that the uniqueness of the solutions obtained through MBCs cannot be

ensured.

The construction of the Onsager matrix shows the importance of Condition2 in formulating

the OBCs for the moment system. We will now present an intuitive understanding of this condi-

tion. The entropy flux αTA(n)α represents the transport of entropy across ∂Ω and therefore it

should not depend upon that part of the solution which does not have any velocity in the normal

direction i.e. it should be independent of W0 which represent the resting waves(see (69)). This

statement is also justified by (71) where H only depends upon W+ and W−. But if Condition2

is not satisfied then R0 6= 0 in (69), which is the case for the MBCs, leading to an artificial

contribution from W0 into H through the boundary conditions. This leads to a non-physical

entropy flux at the boundary which is responsible for instabilities.

The construction of the matrix L discussed in the above sections is one of the various methods

which are possible to construct a symmetric positive semi-definite L and is based upon our

hypothesis that the coefficients for the lower order moments arising from MBCs should not be

disturbed which complies with the methodology developed recently in [26] and [21]. Contrary

to the methodology suggested in the present work, one might choose to transform both the

coefficients of the higher and the lower oder moments in the MBCs to obtain an Onsager matrix;

therefore, there could be various ways to obtain a desirable Onsager matrix. The extent to which

different L influence the physical accuracy of our Hermite discretization in (18) is an intriguing

question in itself. It might be very much possible that an Onsager matrix constructed in a
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different way will lead to more physically accurate results. An attempt towards this direction

was already made in [21] where the authors altered the coefficients of the initially obtained

Onsager matrix to obtain physically more accurate results; on the other hand it seems most

reasonable to stay as close to MBCs as possible. Despite of the fact that there might exist a

physically more accurate Onsager matrix, the importance of stable boundary conditions cannot

be underestimated. It has been shown in many studies (see [16, 31] and references therein for

a detailed discussion) that numerical schemes fail to converge, specially for curved boundaries,

if one does not provide stable boundary conditions; therefore in order to obtain convergent

numerical results it is crucial that one uses OBCs over MBCs.

From (54) it is clear that our model for L relies on the invertibility of Âoe. The requirement

for the invertibility of Âoe is nicely met in the one dimensional case; but whether such an invert-

ibility exists for a multi-dimensional case is not very clear. Though a premature computational

analysis shows that Âoe is invertible even for multi-dimensional systems, atleast in general. If

the invertibility of Âoe can be shown for an arbitrary order moment system or can be assumed

due to certain arguments then L can be modelled similar to (54) and a proof for the symmetric

positive semi definiteness of L in the multi-dimensional case could be constructed along the

same lines as in Theorem 5.2.

6 Conclusion

In the present work we have discussed a methodology to construct stable boundary conditions

for a moment system arising from one-dimensional kinetic equation. We have first discussed

the computation of boundary conditions using the Maxwell accommodation model which is

well-known in the literature. Then by studying the kernel of the various matrices involved, we

proposed a model for the Onsager matrix; this model was then shown to be symmetric positive

semi-definite with the help of recursion relations of the Hermite polynomials. The model for

the Onsager matrix was such that the coefficients of the lower order moments appearing in

the Maxwell boundary conditions were not disturbed; such a model complied with the earlier

proposed methodologies to construct the Onsager matrix.

7 Appendix

7.1 Analysis using characteristic splitting

A well-known methodology to study the stability of the boundary conditions is through their

characteristic decomposition; see [7, 18] for a detailed discussion of this framework. Let the

eigenvalue decomposition of A(n) be XΛXT with X and Λ being the matrices containing the

eigenvectors and the eigenvalues respectively. Then by introducing the characteristic variables
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W = XTα into (1c) we can split the boundary conditions as

W− = R̂Ŵ + ĝ, (with Ŵ =

(
W+

W−

)
, R̂ = (R+,R0) , ĝ = (BX−)−1 g) (69)

where W−/+/0 are the characteristic variables which move with negative, positive and zero

characteristic speeds respectively. The matrices X−/+/0 contain those eigenvectors which cor-

respond to negative, positive and zero eigenvalues. We note that the unit vector n points out

of the domain and therefore W− represents those variables which bring information into the

domain. The matrices R+ and R0 are given as

R0 = − (BX−)−1 BX0, R+ = − (BX−)−1 BX+. (70)

Using the characteristic variables and the boundary conditions in (69), we can simplify the

entropy flux at the boundary, H, as

H = αTA(n)α = WTΛW = ŴT
(
Λ̂ + R̂TΛ−R̂

)
Ŵ + 2ŴT R̂TΛ−ĝ︸ ︷︷ ︸

H̃

+ĝTΛ−ĝ. (71)

where Λ+ and Λ− are diagonal matrices which contain positive and negative eigenvalues of A(n)

on their diagonals respectively. The matrix Λ̂ is a block diagonal matrix with the first block

being Λ+ and all the other entries being zero. In order to study H, we have a crucial result

which follows from elementary linear algebra

Lemma 7.1. Let x ∈ Rn and C ∈ Rn×n be a symmetric positive semi-definite matrix. Let

M = xTCx + 2xTh where h ∈ range(C) and is independent of x. Then, M can be bounded as

M≥ −hTC†h where C† is the pseudo-inverse of C.

Proof. The quadratic form M can be expressed as

M = (x + h̃)TC(x + h̃)− h̃TCh̃, (with h̃ = C†h). (72)

where C† represents the pseudo-inverse of C. Since C ≥ 0, we then have M ≥ −h̃TCh̃ =

−hTC†h.

Comparing the general formulation presented in Lemma 7.1 with H̃, we can identify C and

h as

C = Λ̂ + R̂TΛ−R̂, h = R̂TΛ−ĝ (73)

Therefore, if we can somehow ensure the positive semi-definiteness of C then we will be able

to bound H̃ solely in terms of h which will provide us with a bound of the type (5) for the

entropy flux, H, leading to the stability of the boundary conditions. By choosing Ŵ = (0,W0),

with W0 being arbitrary, and then by choosing Ŵ = (W+,0), with W+ being arbitrary, in the

22



7.2 Proof of Lemma-4.1

quadratic form of C (ŴTCŴ), we can find the conditions such that C ≥ 0

R0 = 0 ⇔ ker{An} ⊆ ker{B} (74a)

RT
+Λ−R+ + Λ+ ≥ 0 (74b)

If the above two conditions are satisfied along with h ∈ range(C), then due to Lemma 7.1 H in

(71) can be bounded as

H ≥− hTC†h + ĝTΛ−ĝ (75)

which provides us with a bound of the type (5) and hence stability in the sense of Definition 2.1.

The above analysis can be summarised in the form of the following conditions

Condition1 rank(B) = p and p should be equal to the number of negative eigenvalues of A(n).

Condition2 ker{A(n)} ⊆ ker{B}(or R0 = 0).

Condition3 RT
+Λ−R+ + Λ+ ≥ 0.

Condition4 RT
+Λ−ĝ ∈ range(Λ+ + RT

+Λ−R+).

7.2 Proof of Lemma-4.1

Lemma 7.2. Let a matrix C be Onsager compatible with the same structure as that given in

(29), then it has the following properties

Property1 The ker{C} is given as

ker{C} = span

{(
0

ker{C1}

)}
. (76)

Property2 The eigenspectrum of C is symmetric about the origin.

Property3 The number of negative eigenvalues of C are equal to p.

Proof. The proof for Property1 immediately follows from the second condition required for

Onsager Compatibility as per which ker{CT
1 } = ∅. For the proof of Property2 , we have the

following. Let x be an eigenvector of C with the eigenvalue λ, then

Cx =

(
0 C1

CT
1 0

)(
x1

x2

)
=

(
C1x2

CT
1 x1

)
= λ

(
x1

x2

)
(77)

where x1 ∈ Rp and x2 ∈ Rq. Using the above we obtain(
0 C1

CT
1 0

)(
−x1

x2

)
=

(
C1x2

−CT
1 x1

)
= −λ

(
−x1

x2

)
(78)
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which shows that −λ is also an eigenvalue of C and proves Property2 . Due to Property1 the

matrix C has a zero eigenvalue with a multiplicity of q − p. Thus the number of negative

eigenvalues of C are equal to m−(q−p)
2 = p+q−(q−p)

2 = p, which proves our claim.

7.3 Proof of Lemma-4.2

Lemma 7.3. The flux matrix A(1) appearing in (25) is Onsager compatible.

Proof. From (25) it is clear that A(1) has the structure

A(1) =

(
0 Aoe

(Aoe)T 0

)
(79)

with Aoe ∈ Rno×ne ; moreover due to (24) no ≤ ne. From the tensorial structure of Aoe given in

(26), we know that it will have the form

Aoe =


1
√

2 0 · · · · · · · · · · · · 0

0
√

3 2
. . .

...

0 0
√

5
√

6
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

 (80)

which shows the linear independence of all of its rows and thus rank(Aoe) = no. This proves

our claim.

7.4 Proof of Theorem-5.1

Theorem 7.1. Let the flux matrix, corresponding to a general symmetric hyperbolic system

(1a), A(n) ∈ Rm×m defined in (3) be Onsager compatible with

A(n) =

(
0 A∗n

(A∗n)T 0

)
, x ∈ ∂Ω (81)

where A∗n ∈ Rp×q and p ≤ q. Also, assume the solution vector α to be structured as α =

(αp,αq)
T where αp ∈ Rp and αq ∈ Rq. At the boundary, let αp and αq be related as

αp = Mαq + g = LA∗nαq + g or (I,−M)︸ ︷︷ ︸
B

α = g, x ∈ ∂Ω (82)

where L ∈ Rp×p is a constant symmetric positive semi-definite matrix, M ∈ Rp×q and g ∈
range(L) is the inhomogeneity arising from the boundary. Then, the boundary conditions in

(82) are stable in the sense of Definition 2.1.
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Proof. Since A(n) is Onsager compatible then due to Lemma 4.1 the matrix A(n) also possesses

Property1 to Property3 . From Property3 of the flux matrix A(n), we know that the OBCs

in (82) prescribe the correct number of boundary conditions. In order to see whether we can

reproduce a bound of the type (7) with (82), we recall the entropy flux across the boundary (5)

corresponding to (1a)

H = αTA(n)α = 2αT
p A∗nαq = 2

[
α̂T
q Lα̂q + α̂T

q g
]
, (with α̂q = A∗nαq) (83)

where we have used (81) and (82). Since g ∈ range(L) and L has been assumed to be symmetric

positive semi-definite, we can use the result of Lemma 7.1 to bound H as H ≥ −1
2gTL†g, with

L† begin the pseudo-inverse of L. Replacing the bound for H in (4), we find

∂t

∫
Ω
αTαdx ≤ 1

2

∮
∂Ω

gTL†gds (84)

which shows the stability of the boundary conditions in (82).

7.5 Proof of Theorem-5.2

Theorem 7.2. The matrix L given by (54) is symmetric positive semi-definite.

Proof. If L is symmetric positive semi-definite then P̂ = 1
2β

(
Âoe

)T
LÂoe =

(
Âoe

)T
M̂(mbc)

should also be symmetric positive semi-definite due to the invertibility of Âoe.

• Symmetricity: Using the expression for M̂(mbc) from (37), P can be written in tensorial

form as

P̂ik =Âoeji M̂
(mbc)
jk (85a)

=
1

ρ0
Âoeji 〈H2j+1, H2k〉(R+,f0)︸ ︷︷ ︸

P
(1)
ik

− 1

ρ0
Âoeji 〈H2j+1, H0〉(R+,f0)

〈H1, H2k〉(R+,f0)

〈H1, H0〉(R+,f0)︸ ︷︷ ︸
P

(2)
ik

. (85b)

Using the definition of Âoe from (26), the above expression can be simplified as√
θ0ρ

2
0P

(1)
ik = 〈H2j+1, H2iξ〉(R,f0) 〈H2j+1, H2k〉(R+,f0)

=ρ0

√
θ0

√
2i+ 1 〈H2i+1, H2k〉(R+,f0) + ρ0

√
θ0

√
2i 〈H2i−1, H2k〉(R+,f0)

=ρ0 〈H2i, H2kξ〉(R+,f0) .

(86)
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Now doing the same for P
(2)
ik we have

√
θ0ρ

2
0P

(2)
ik = 〈H2j+1, H2iξ〉(R,f0) 〈H2j+1, H0〉(R+,f0)

〈H1, H2k〉(R+,f0)

〈H1, H0〉(R+,f0)

=ρ0

√
θ0

(√
2i+ 1 〈H2i+1, H0〉(R+,f0) +

√
2i 〈H2i−1, H0〉(R+,f0)

)
×
〈H1, H2k〉(R+,f0)

〈H1, H0〉(R+,f0)

=ρ0

〈ξH0, H2i〉(R+,f0)〈H1, H2k〉(R+,f0)

〈H1, H0〉(R+,f0)

=ρ0

√
θ0

〈H1, H2i〉(R+,f0)〈H1, H2k〉(R+,f0)

〈H1, H0〉(R+,f0)
(∵

ξ√
θ0
H0 = H1).

(87)

The expressions (86) and (87) are now symmetric with respect to i and k which implies that

P is symmetric and so is L. In writing the above relation we have used the orthogonality

(20a) and the recursion relation (20b) of the Hermite polynomials.

• Positive Semi-Definiteness: Let the quadratic form of P be represented by κ then,

κ = xiP
(1)
ik xk − xiP

(2)
ik xk. (88)

Let f̄ be a function such that

f̄(ξ) =
ne−1∑
i=0

xiH2i(ξ)f0(ξ), ξ ∈ R+. (89)

Then κ reads

ρ0κ =
1√
θ0

〈
xiH2if0f

−1
0 , xkH2kξf0

〉
R+ −

〈H1, xiH2if0〉R+〈H1, xkH2kf0〉R+

〈H1, H0〉(R+,f0)

=
〈
f̄2, H1f

−1
0

〉
R+ −

〈H1, f̄〉2R+

〈H1, H0〉(f0,R+)
(∵ H1 =

ξ√
θ0

).

(90)

The integrals in the above expression will be bounded because f̄ ∈ L2(R+, f−1
0 ). Let

x̂1(ξ) = f̄

√
H1f

−1
0 , x̂2(ξ) = H0

√
H1f0 ∀ ξ ∈ R+. (91)

Then by Cauchy-Schwartz inequality we have

|〈x̂1, x̂2〉R+ |2≤ 〈x̂1, x̂1〉R+〈x̂2, x̂2〉R+ . (92)

Substituting the expression for x̂1 and x̂2 in the relation above we obtain

〈f̄
√
H1f

−1
0 , H0

√
H1f0〉2R+ ≤〈f̄

√
H1f

−1
0 , f̄

√
H1f

−1
0 〉R+

× 〈H0

√
H1f0, H0

√
H1f0〉R+ .

(93)
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The above expression can be further simplified to

〈H1, H0f0〉R+

〈
f̄2, H1f

−1
0

〉
R+ ≥ 〈H1, f̄〉2R+ . (94)

Since 〈H1, H0f0〉R+ > 0, the above inequality immediately implies

κ ≥ 0 (95)

with equality in the above expression if and only if

x̂1 = γx̂2 ⇒ f̄ = γf0 (96)

where γ ∈ R.

The symmetric positive semi-definiteness of P̂ implies the same for L.

7.6 Proof of Lemma-5.1

Lemma 7.4. The inhomogeneity g(±) given by (38) is such that g(±) ∈ range(L) where L is

given by (54).

Proof. From (37), we can trivially conclude for M(mbc) that

M(mbc) =

(
0 0

0 M̃(mbc)

)
(97)

where M̃(mbc) ∈ R(no−1)×(no−1). The first row of M(mbc) being zero captures the no penetra-

tion boundary condition of the fluid and the first column begin zero shows us that α0, which

corresponds to the deviation of density(see (22)), has no role to play in any of the boundary

conditions. Using the above properties of M(mbc) in our model for the Onsager matrix (54), we

have

L =

(
0 0

0 L̃

)
(98)

where L̃ ∈ R(no−1)×(no−1). Since the equality in the Cauchy-Schwartz inequality (95) exists if

and only if (96) holds so L̃ will be a s.p.d matrix. The temperatures of the walls, θ̃(±) in (14),

can be arbitrary chosen therefore the inhomogeneity g(±), given in (38), can be structured as

g(±) =

(
0

g̃(±)

)
(99)

where g̃(±) ∈ Rno−1 and is arbitrary. Comparing the structure of g(±) with that of L and using

the s.p.d nature of L̃, we immediately find g(±) ∈ range(L).
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7.7 Relation of the Grad’s-20 moment system to Discrete Velocity Models

Let us consider the following distribution function for a multi-dimensional velocity space which

corresponds to the Grad’s-20 moment system [4]

fM (x, ξ, t) =
∑

|β(i)|≤M

αβ(i)(x, t)ψβ(i)(ξ)f0 (100)

where β(i) =
(
m

(i)
1 , . . . ,m

(i)
d

)
is a multi-index, M = 3 and

ψβ(i)(ξ) =

d∏
p=1

He
m

(i)
p

(
ξp√
θ0

)
. (101)

The total number of moment variables, αβ(i) , will be m = 20. Assuming the normal to the

wall boundary to be pointing in the positive x-direction, we are only concerned about the

characteristic variables arising from the flux matrix corresponding to the positive x-direction,

which is given by

A
(1)
ij =

∫
Rd
ψβ(i)ξ1ψβ(j)f0dξ (102)

The maximum possible degree of the Hermite polynomials, in each direction, isM = 3. Therefore

the minimum number of Gauss-Hermite grid points (in the 3D velocity space) required to perform

the integral appearing in A(1) exactly are G = 4 × 4 × 4 (L + 1 gauss points provide exact

integration for polynomials upto 2L+ 1 degree). Let {di} and {zi} denote the weights and the

locations of all of these G number of quadrature points (we implicitly assume some ordering for

the Gauss points in different directions). Then

A
(1)
ij =

∫
Rd
ψβ(i)ξ1ψβ(j)f0dξ =

G−1∑
m=0

ψβ(i)(zm)z(1)
m ψβ(j)(zm)f0(zm)dm (103)

where z
(1)
m is the x-component of the m-the quadrature point location. Then A(1) can be

decomposed as

A(1) = RΛRT (104)

where

Rij = ψβ(i) (zj)
√
f0(zj)dj , Λij = δijz

(1)
i . (105)

Clearly R ∈ Rm×G and Λ ∈ RG×G. Though RijRkj = δik, the expression in (104) is not the

eigenvalue decomposition of A(1). Let α ∈ Rm represent a vector containing all the moments

αβ(i) and let the eigenvalue decomposition of A(1) be given as A(1) = XΛXT , then
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α = RF = XW⇒W = R̃F (R̃ = XTR) (106)

where W are the characteristic variables and Fi =
√

di
f0(zi)

f(x, zi, t). Let us assume F to be

ordered as

F =

(
F−

F+

)
where F±i =

√
di

f0(zi)
f(x, zi, t) ± z(1)

i > 0, (107)

using which the relation in (106) becomes

W = R̃F = R̃−F− + R̃+F+. (108)

By prescribing a value to F−, we provide a value to the incoming part of the distribution

function which will be similar to (64). A computational study of the matrix R̃− shows that its

structure is such that a prescribed value for F−, influences all the components of W, which is

undesirable. Therefore, we cannot use (64) to prescribe boundary conditions for the Grad’s-20

moment system.
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