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A hierarchical simulation approach for Boltzmann’s equation should provide a single nu-
merical framework in which a coarse representation can be used to compute gas flows 
as accurately and efficiently as in computational fluid dynamics, but a subsequent refine-
ment allows to successively improve the result to the complete Boltzmann result. We use 
Hermite discretization, or moment equations, for the steady linearized Boltzmann equation 
for a proof-of-concept of such a framework. All representations of the hierarchy are rota-
tionally invariant and the numerical method is formulated on fully unstructured triangular 
and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demon-
strate the performance of the numerical method on model problems which in particular 
highlights the relevance of stability of boundary conditions on curved domains.
The hierarchical nature of the method allows also to provide model error estimates by 
comparing subsequent representations. We present various model errors for a flow through 
a curved channel with obstacles.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

From the point of view of non-equilibrium thermodynamics there are two fundamentally different approaches to flow 
computations. The vast majority are based on fluid dynamic equations using the classical closure relations of Navier–Stokes 
and Fourier [17]. Sometimes these relations maybe refined or extended [28,34], but those models still remain in the context 
of macroscopic field theories [27]. On the other hand, if one is interested in precise non-equilibrium predictions, typically 
the Boltzmann equation is solved for the velocity distribution function of the particles [7].

The differences of the approaches are evident both mathematically and numerically. There is the use of continuum fields, 
like flow velocity and temperature in fluid dynamics on the one side and the microscopic probability function of the particle 
velocities on the other. Often, the distribution function is considered the cost to pay for increased non-equilibrium accuracy. 
Still, engineering fields are the preferred variables in applications and only obtained indirectly by averaging the distribution 
function. Numerically, there exists a very rich literature on different methods how to solve partial differential equations of 
fluid dynamics, from Finite-Volume (FV) to Finite-Element (FE) methods [20,14], which are still further developed. These 
often deal with accurate representation of the fields and the handling of nonlinearities in the equations. The Boltzmann 
equation, on the other hand, is frequently solved by particle methods, like the direct simulation Monte-Carlo method [3], 
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where a central issue is given by speed-up [15] and noise reduction [2]. Direct discretizations use basic ingredients of the 
FV- or FE-approaches [8], but most effort goes into the efficient computation of the collision integral [23,12].

It is interesting to note, that any numerical approach to solve the Boltzmann equation necessarily contains a numerical 
method for fluid dynamic equations in the asymptotic limit of small mean free paths (small Knudsen number). While this 
limit may not be the focus of a Boltzmann solution, it is reasonable to expect that a serious implementation of the Boltz-
mann equation for flow computations should at least exhibit the capability of a fluid dynamic flow solver. On the other hand 
computing flow based on fluid dynamic equations is usually challenged by model errors when applied to non-equilibrium 
flows. In many cases model errors dominate numerical discretization errors and estimating these errors in an efficient way 
becomes essential when judging the results for flow applications.

This paper aims at a hierarchical simulation approach for the Boltzmann equation with the properties:

• The discretization of the Boltzmann equation ranges from coarse to fine representations in a cascading hierarchy using 
a single numerical framework.

• The coarse representation should result in an accurate and efficient numerical method to solve the classical fluid dynamic 
equations within the single framework.

• The finer representations give a valid and successively better numerical discretization of the Boltzmann equation which 
allows high accuracy.

• All representations are rotationally invariant such that the numerical method can handle unstructured meshes and pos-
sibly complex geometries easily.

• The framework should provide a systematic for model error estimation between the different representations and allow 
model-refinement local in space.

To present a proof of concept for such a framework this paper will consider steady and slow processes (low Mach number) 
and thus linear equations. The main challenge is to find a formulation that can include both the hyperbolic nature of 
the Boltzmann transport process in the fine representation as well as the elliptic nature of the Stokes problem in the 
coarse representation. We use a Hermite-discretization which results in hyperbolic relaxation systems, known as moment 
equations [21,5], that are solved with a discontinuous Galerkin method [18]. The Hermite-discretization yields the classical 
fluid dynamic equations in a reformulated way which fit into the framework. Additionally, stable boundary conditions are 
an essential ingredient. The entropy estimate for the hyperbolic systems provides simple conditions to guarantee stability of 
boundary conditions [29,24] and we demonstrate and discuss the numerical impact of these conditions for several simplified 
model systems. We also show that the coarsest representation in the framework gives an accurate discretization to fluid 
dynamic equations.

The hierarchy of representations allows to quickly obtain model error estimates by comparing a result with the solution 
on the next finer level. To demonstrate this approach we will consider the flow through a curved channel with obstacles 
and efficiently estimate the local model error of a classical fluid dynamic simulation within the hierarchical Boltzmann 
framework. The local errors of finer representations can be estimated in an analogous way and an example is also given. 
Local model refinement and using different representations in different domains is left for future work.

The original idea of using moment equations for hierarchical simulations was formulated by Müller in the context of 
extended thermodynamics, see the text book [21]. The moment systems were introduced as ‘theory of theories’ in which 
the convergence behavior of subsequent systems was used to predict their validity. Both well-posed boundary conditions 
and suitable computational methods were not available so that the examples of extended thermodynamics were mostly 
simple cases.

Note that the requirement to have a valid discretization for fluid dynamic equations on the coarsest level is similar to 
asymptotic preserving schemes [10]. However, in this paper no smallness parameter is involved, instead we demand that 
when reducing the numerical degrees of freedom for the Boltzmann discretization we literally arrive at a fluid dynamics 
implementation. The approach in [9] is similar in spirit, but lacks the cascading hierarchical setup.

The implementation of the methods presented in this paper is freely available at the website GitHub [36]. This code not 
only is capable to produce the simulation results presented, but also contain the explicit details of the large system matrices 
and analytical solutions used. In this way the code complements the information of this paper.

2. Hermite-discretization for the Boltzmann equation

We consider the Boltzmann equation for monatomic ideal gases in the form

∂ f

∂t
+ ci

∂ f

∂xi
= S ( f ) (1)

where S( f ) is the collision operator. The Maxwell distribution

f M (c;ρ,v, θ) = ρ/m(2πθ)−3/2 exp

(
− (ci − vi)(ci − vi)

)
(2)
2θ
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based on a local density ρ , macroscopic velocity v, and temperature θ is an equilibrium point of the Boltzmann equation in 
the sense that S( f M) = 0. The particle mass is given by m.

Boundary conditions for walls are based on the accommodation model for the wall, which gives the incoming distribution 
as a superposition of a specularly reflected and an accommodated part which follow a given wall distribution function. We 
choose an outward-facing wall normal n with a corresponding velocity component cn and the wall does not move in the 
normal direction. The case of moving walls is left for future work. We denote by fwall the distribution function of the 
particles accommodated with the wall and f is the distribution of the gas just in front of the wall. The distribution function 
f at the wall is then given by

f (c)|BC =
{

χ fwall (c) + (1 − χ) f (c�) cn < 0
f (c) cn > 0

(3)

where the velocity reflection c� inverts the sign of the component normal to the wall cn .

2.1. Steady linear equations

We will discretize the steady Boltzmann equation by a Hermite expansion in velocity space, see also [16,4,33,5]. In 
the framework of this paper we will use an expansion based on a fixed Maxwellian f M (c;ρ0,0, θ0) corresponding to an 
equilibrium ground state with density ρ0, velocity v0 = 0 and temperature θ0. An extension to the non-linear case is planed 
as future work. The distribution then takes the form

f N (x, c) =
Nd∑

n=0

Mn∑
s=0

w(s)
i1 i2···in

(x)ψ
(s)
i1i2···in

(
c

θ
1/2
0

) f M (c;ρ0,0, θ0) (4)

with deviatoric (tracefree) coefficients w(s)
i1 i2···in (x) depending on space x and derived from basis functions ψ(s)

i1 i2···in (c/θ1/2
0 ). 

The highest tensor degree is Nd and Mn is the number of radial or trace coefficients on tensor level n. It could be shown 
in [26] that such a spectral expansion does converge to the solution of a kinetic equation in the linear case and we assume 
convergence for the scenarios presented in this paper.

In the expansion, the sum in n and s is explicit, but additionally doubled indices ik ∈ {1, 2, 3} are summed over (summa-
tion convention). Different choices of upper limits of the sums represent different discretization levels or representations. 
The basis functions read

ψ
(s)
i1i2···in

(ξ) = ξ〈i1ξi2 · · · ξin〉p(n)
s (

ξ2

2
) (5)

where the tensor ξ〈i1ξi2 · · · ξin〉 is a fully symmetric and deviatoric (tracefree) tensor of n-th degree that can be constructed 
by

ξ〈i1ξi2 · · · ξin〉 = (−1)n

(2n − 1)!! ‖ξ‖2n+1 ∂n

∂ξi1∂ξi2 · · · ∂ξin

(
1

‖ξ‖
)

(6)

or alternatively through recursive constructions of traces. As a result, the n-th degree tracefree tensor ξ〈i1ξi2 · · · ξin〉 contains 
in total 2n +1 independent components which can be written as linear combinations of 2n +1 spherical harmonic functions 
at level n, modeling the anisotropy of the distribution function. On each level n of anisotropy the radial dependence is 
modeled by the polynomials

p(n)
s (y) =

s∑
m=0

(−1)m 
(n + s + 3
2 )


(n + m + 3
2 )

(
s

m

)
ym (7)

which are related to associated Laguerre polynomials. The basis functions (5) are orthogonal such that the expansion (4)
satisfies

w̃(s)
i1i2···in

(x) := n!s!
(n + s + 3
2 )


(n + 3
2 )

ρ0 w(s)
i1 i2···in

(x) = m

∫

R3

ψ
(s)
i1i2···in

(
c

θ
1/2
0

) f N(x, c)dc (8)

where the variables w̃(s)
i1 i2···in (x) absorb the normalizing constants in order to provide more compact expressions below. The 

variables w̃ can easily be related to fluid dynamic quantities. Due to the fixed ground state it is reasonable to consider per-
turbations Û of an equilibrium ground state U0 for all fluid variables such that U = U0 + Û . When only linear contributions 
of the perturbations Û are considered, the variables w̃ represent the following fluid quantities

w̃(0) = ρ0 + ρ̂, w̃(0)
i = ρ0

v̂ i

θ
1/2
0

, w̃(1) = −3

2
ρ0

θ̂

θ0
, w̃(0)

i j = σ̂i j

θ0
, w̃(1)

i = − q̂i

θ
3/2
0

(9)

where σ̂i j is the stress tensor and q̂i is the heat flux of the gas.
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Fig. 1. Example of a cascade for system matrices of Hermite-discretizations for the Boltzmann equation.

The expansion (4) is inserted into the Boltzmann equation (1) and the equation is then projected onto the basis func-
tions (5). We follow [21,33] and use recursion formulas for Laguerre polynomials and deviatoric tensors to transform the 
Boltzmann equation into the system of partial differential equations for w̃(s)

i1 i2···in (x)

2n

2n + 1

(
2n + 2s + 1

2
∂〈i1 w̃(s)

i2 i3···in〉 − ∂〈i1 w̃(s+1)
i2i3···in〉

)
+ ∂k w̃(s)

i1 i2···ink − s∂k w̃(s−1)

i1 i2···ink = θ
−1/2
0 P (s)

i1i2···in
(10)

with n = 0, . . . Nd and s = 0, . . . Mn for each n. In this paper we will mostly use discretizations considering complete tensors 
such that Mn = �(Nd − n)/2� with Gauss brackets ��. Two other popular choices are Nd = 1 and Mn ∈ {1, 0} which represents 
the (linear) Euler equations with variables {ρ, vi, θ} and Grad’s 13-moment-case with Nd = 2 and Mn ∈ {1, 1, 0} which adds 
stress and heat flux to the Euler equations. The equations of Navier–Stokes and Fourier follow from this case, see Sec. 5.4.

The production terms in (10) are based on the Boltzmann collision operator or an approximation. The paper uses 
Maxwell-molecules and applies the linear perturbation approximation as discussed above. This gives a diagonalized lin-
ear operator

P (s)
i1i2···in

=
∫

R3

ψ
(s)
i1i2···in

(c)S ( f )dc = − 1

τ
a(s,n) w̃(s)

i1 i2···in
(11)

on the right hand side of (10) with positive coefficients a(s,n) , see [21,35] for details. It is easy to adjust this right hand side 
to BGK- or Shakov-models or the hard-sphere or other particle interactions [6]. Main parameter implied by the Boltzmann 
equation is the inverse collision frequency of relaxation time τ . A mean free path follows from the formula λ = θ

1/2
0 τ which 

may be used to define a Knudsen number λ/L with a macroscopic length L. In the next sections we will set θ0 = 1 and use 
τ synonymous to a Knudsen number.

The final Hermite-discretization of the Boltzmann equation (10) has the structure

A(x)∂xU + A(y)∂y U + A(z)∂zU = −P U (12)

with system matrices A(x,y,z) and production matrix P . The variable vector U combines the components of all coefficients 
w̃ into a single vector. The system matrices can be identified from (10) with the help of computer algebra software, using 
properties of deviatoric tensors and selecting a set of independent components of the deviatoric variables w̃(s)

i1 i2···in . One 
advantage of Hermite-discretizations is rotational invariance of the equations such that no artifacts will be present for 
non-Cartesian settings. Additionally, subsequent increase of variables follow a hierarchical structure such that the system 
matrices are contained in each other. The smallest matrices represent fluid dynamic theories which means that the coarsest 
order of discretization will still give reasonable and highly efficient simulation results.

In the remainder of this paper we will consider the spatially two-dimensional situation, such that ∂z ≡ 0. This also 
simplifies the tensor variables even thought they formally remain tensor in three dimensions, since the velocity space 
remains three-dimensional. An example for the hierarchy of system matrices for a setup in two space dimensions is shown 
in Fig. 1. Only the matrices in x-direction are shown. The block marked in the outer left matrix is the system matrix of the 
Euler equations which is a subset of the 13-moment case, which itself is displayed as a subset of a matrix for a system 
using full tensors up to degree four. The outer right case uses Nd = 9 which results in a total of 125 variable components 
in two dimensions.

2.2. Wall boundary conditions

An alternative form of the kinetic boundary condition (3) can be found by splitting the distribution function f into an 
odd and even part with respect to the normal velocity cn leading to the relation
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f (odd) = χ

2 − χ

(
fwall − f (even)

)
for cn < 0 (13)

which defines the relevant incoming part of the distribution. For linear moment systems based on Hermite discretization 
boundary conditions are required for those components of the coefficients w̃(s)

i1 i2···in which are odd in c · n in the coordinate 
system of the boundary [16,37]. If these components belong to the basis function components ψ (BC)(c) the wall boundary 
conditions follow from the projection

∫
cn<0

ψ (BC) f (odd)
N dc = χ

2 − χ

⎛
⎜⎝

∫
cn<0

ψ (BC) fwalldc −
∫

cn<0

ψ (BC) f (even)
N dc

⎞
⎟⎠ (14)

where f (odd)
N contains all components of the expansion (4) odd in c · n and f (even)

N all even components. Consequently, after 
integration the left and right hand side of (14) contains the odd and even tensor components of the coefficients w(s)

i1 i2···in
when written in the wall normal frame.

The wall distribution is given by a Maxwellian of the form (2) but evaluated with a wall temperature θ(W ) , a wall 
velocity v(W ) with n · v(W ) = 0 and a wall density ρ(W ) which follows from a zero mass flux condition for the wall. In the 
following we will use Vt = vt − v(W )

t for the tangential slip velocity at the wall and �θ = θ − θ(W ) for the temperature 
jump.

The final equations for the coefficients w(s)
i1 i2···in are obtained from (14) together with (4) using computer algebra software. 

The resulting matrices also show hierarchical structure.

3. Stability of boundary conditions

Considering the generic system (12) we assume the variable vector is of length N such that U ∈ R
N and A(x), A(y) and 

P are N × N-matrices. It can be shown that the system can be symmetrized and, hence, is hyperbolic [21], that is, for a 
normal vector n the matrix

A(n) = nx A(x) + ny A(y) (15)

is diagonalizable with real eigenvalues. In particular there are p ≤ N/2 pairwise eigenvalues with negative and positive sign 
and p corresponding odd variable components. Consequently, we have p boundary conditions in the linearized form

B(n)U = g (16)

where B(n) ∈R
p×N depending on the wall normal n and g is the inhomogeneity induced by wall temperature and velocity.

3.1. Conditions for stability

It turns out to be important to study the stability of the boundary conditions (16) by considering the time dependent 
hyperbolic system

∂t U + A(x)∂xU + A(y)∂y U = 0 (17)

which we assume to be in symmetric form, and homogeneous boundary conditions B(n)U = 0 together with some smooth 
initial conditions. The L2-entropy on a bounded domain � should satisfy the equation

d

dt

∫
�

1

2
U (x, t)T U (x, t)dx = −

∮
∂�

1

2
U (x, t)T A(n)U (x, t)dx ≤ 0 (18)

where A(n) from (15) is based on the boundary normal. Due to symmetric hyperbolicity A(n) is diagonalizable by A(n) =
Q T �Q with � = diag(�m, 0, �p), where we combine the negative and positive eigenvalues in �m and �p , respectively. 
Moment equations are rotationally invariant and �m = −�p holds. Note that Q will depend on the normal vector n of 
the boundary. Based on Q characteristic variables are defined by W = Q U with W = (Wm, W0, W p)T . We now write the 
boundary conditions (16) with g = 0 in characteristic variables by transforming B(n)U = B(n) Q T W =

(
B̃m | B̃0 | B̃ p

)
W = 0. 

Assuming B̃m is invertible the last equation is solved for Wm yielding

Wm = (
R0, R p

)(
W0
W p

)
(19)

with R0 = −B̃−1
m B̃0 and R p = −B̃−1

m B̃ p . This describes the boundary condition in characteristic form. The characteristic 
variables associated with the incoming waves Wm are described as function of the values of the outgoing and possibly 
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standing waves, W p and W0. With this form of boundary conditions we can conclude for the boundary integral in (18) the 
condition

U T A(n)U = W T �W =
(

W0
W p

)T (
RT

0 �m R0 RT
0 �m R p

RT
p�m R0 �p + RT

p�m R p

)(
W0
W p

) !≥ 0. (20)

Because �m = −�p and �p is a positive definite matrix we find

(i) R0 = 0 (ii) �p − RT
p�p R p pos.semi-def. (21)

as stability conditions for the boundary conditions (16). This analysis is equivalent to the one in [11] for Friedrichs systems 
and more details are presented in [22].

3.2. Discussion

The first condition implies that the incoming waves may depend on the outgoing waves but not on the zero-waves 
which are at rest with respect to the wall. Otherwise, this standing waves could constantly feed into the entropy in (18)
and stability is not assured. Since the zero-waves are related to the null-space of the flux matrix A(n) condition (i) can be 
equivalently reformulated as

(i)’ ker A(n) ⊂ ker B(n) (22)

directly as condition that couples A(n) with B(n) . This condition is easy to check for instance for moment equations and 
boundary conditions based on the accommodation model. Since the boundary conditions (14) are typically derived inde-
pendent of the moment equations and their flux matrix it is not surprising that condition (i)’ is not met in the general case. 
We will show below that already for model systems the null space condition (i)’ is crucial for convergence of a numerical 
discretization and in order to solve moment equations the accommodation boundary conditions for moments need to be 
adjusted to satisfy (i)’, see [24]. This can be done by modifying the coefficients of the highest moment component resulting 
in the equation (14).

Condition (ii) gives a lower and upper bound for R p , that is, how the incoming waves may depend on the outgoing 
waves. Obviously, R p = 0 is a limiting case in which the incoming waves are set to zero and the entropy dissipation in 
(18) is negative due to outgoing waves U T A(n)U = W T

p �p W p . On the other hand, R p can not be too large, otherwise the 
negative sign in (ii) will overcome the positivity of �p and positive definiteness will be lost. Condition (ii) will depend on 
the details of the boundary matrix B(n) . For systems of moment equation the condition has to be checked on a case by case 
basis. All equations used in this work satisfy (ii).

The general hyperbolic system given in (12) is symmetric, therefore its convex entropy functional is given by 1
2 U T U . 

So the inequality given in (18) means that we require the actual physical entropy flux at the wall to be positive. The same 
inequality was also derived in [24] for the linear regularized 13-moment equations using the second law of thermodynamics. 
Onsager relations are then enforced in [24] to modify the boundary conditions obtained from the usual moment projection 
of the Maxwell accommodation model in order to ensure thermodynamic stability. These conditions can be related to (21)
and the modifications are equivalent to the ones suggested below. A more detailed investigation of the relation between 
well-posedness of boundary conditions for hyperbolic systems and Onsager boundary conditions is out of scope of this 
paper and will be presented elsewhere.

4. DG formulation

To solve a hyperbolic system of moment equations like (12) we employ a standard discontinuous Galerkin discretiza-
tion [18]. Using V (x) and U (x) as test and ansatz functions, respectively, the variational form for a single element K reads

∫
K

V (x)T A · grad U (x)dx −
∮
∂ K

V (x)T A(n)
−

(
U (x) − U K̃ (x)

)
ds +

∫
K

V (x)T P U (x)dx = 0 (23)

where A = (A(x), A(y)). We used partial integration twice with the upwind numerical flux resulting in the splitting matrix

A(n)
− = 1

2

(
A(n) − |A(n)|

)
(24)

which contains the incoming waves. K̃ is the neighboring element, and V (x) and U (x) the test and ansatz functions. We will 
restrict ourselves to two spatial dimensions and use (bi-)linear and (bi-)quadratic triangular and quadrilateral elements.

It remains to specify how the boundary conditions (16) are incorporated into (23). At the boundary the values for the 
virtual “neighbor” U K̃ in the boundary integral of (23) needs to be specified. Because we have only p boundary conditions 
for N variables, in general, only p variables or variable combinations can actually be prescribed at the boundary. We assume 



72 M. Torrilhon, N. Sarna / Journal of Computational Physics 342 (2017) 66–84
there exists a so-called selector matrix X ∈R
N×N which selects those variables or variable combinations V BC ∈ R

p that will 
be prescribed such that

V =
(

V BC

V rest

)
= X−1U (25)

holds with V rest ∈ R
N−p . The boundary variables V BC could be a suitable selection of components of U such that X is 

merely a permutation matrix. But V BC could also be the incoming characteristic variables such that X = Q T as defined in 
Sec. 3.1.

Let X have the form X = (XBC |Xrest) with XBC ∈R
N×p . The boundary conditions can be written

B(n)U = B(n) X V = B(n) XBC V BC + B(n) Xrest V rest = g (26)

which can be solved for V BC if the selector X is chosen properly. In the virtual neighbor U K̃ we replace the part Ṽ BC with 
its value according to the boundary conditions evaluated on the value U of the interior element. The part Ṽ rest we simply 
replace by the corresponding interior value V rest which represents extrapolation. Then the difference in U in the boundary 
integral of (23) can be written

U − U K̃ = X(V − V K̃ ) (27)

= XBC (V BC − Ṽ BC ) + Xrest(V rest − Ṽ rest) (28)

= XBC (V BC − (B(n) XBC )−1(−B(n) Xrest V rest + g)) (29)

= XBC (B(n) XBC )−1(B(n) XBC V BC + B(n) Xrest V rest − g) (30)

= XBC (B(n) XBC )−1
(

B(n)U − g
)

. (31)

In the variational formulation this expression results in a weak formulation of the boundary conditions (16). Due to the 
pre-factor based on the selector matrix X the boundary conditions are in general broadcasted onto all components of the 
system of equations.

The discretized system is assembled into sparse matrix format and finally solved by the sparse direct linear solver Pardiso 
[25]. For the Boltzmann Hermite-discretization we use as selector matrix X a permutation which selects the odd variable 
components in (14) as boundary variables V BC .

5. Model problems

Before complete moment systems are solved it is instructive to investigate the performance and behavior of the numer-
ical approach on smaller test problems.

5.1. System A

A simplified system that describes rarefied heat conduction in a rigid gas is given by

∇ · q = f

∇θ + ∇ · R = − 1

τ
q

(∇q)dev = − 1

τ
R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(32)

where θ is the temperature, q is the heat flux vector and R is a higher order flux tensor. The scalar source term f represents 
a heating. This system can be derived for example from Grad’s 13-moment-equations when the gas is assumed to be at rest 
and stress-free. For R = 0 in the second equation it reduces to a simple Poisson problem for temperature. For R �= 0 the 
system is equivalent to a Stokes–Darcy–Brinkmann problem. We consider the system and differential operator to be set 
in R

3, such that q is a 3-dimensional vector and R is a symmetric trace-free or deviatoric 3 × 3 matrix. Correspondingly, 
(·)dev takes the symmetric deviatoric part of a tensor. However, in a two-dimensional simulation none of the fields depend 
on the z-coordinate and the only relevant components are

U = (θ,qx,qy, Rxx, Rxy, R yy) ∈R
6. (33)
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Using these variables the system matrices are given by

A(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 2

3 0 0 0 0
0 0 1

2 0 0 0
0 − 1

3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, A(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 1
0 0 − 1

3 0 0 0
0 1

2 0 0 0 0
0 0 2

3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(34)

which exhibit the eigenvalues λi ∈ {0, 0, ±1, ±√
2}. The system is not symmetric but can be easily symmetrized by applying 

the symmetric positive definite matrix

S = diag( 1,

(
1 0
0 1

)
,

⎛
⎝ 2 0 1

0 2 0
1 0 2

⎞
⎠ ) (35)

from the left. Note that this changes the eigenvalues of the system matrices. Alternatively, we can use a similarity trans-
formation with S1/2 to obtain a symmetric system with identical eigenvalues when written in transformed variables S1/2U . 
We decide to work with the present form of the system such that the variables keep a simple physical interpretation.

The simplest physical wall boundary conditions reads

qn = θ − θW , Rnt = qt (36)

with a classical temperature jump condition and a higher order condition combining the tangential heat flux with its 
flux. θW is the wall temperature. The indices n and t denote tensor components in a coordinate system spanned by the 
boundary normal n = (

nx,ny
)

and the tangent t = n⊥ = (−ny,nx
)
. The variable vector (33) can be transformed into the 

normal/tangential components by multiplying with the rotation matrix

T
(
nx,ny

) = diag( 1,

(
nx ny

−ny nx

)
,

⎛
⎝ n2

x 2nxny n2
y

−nxny n2
x − n2

y nxny

n2
y −2nxny n2

x

⎞
⎠ ) (37)

constructed from the normal n. This matrix satisfies T
(
nx,ny

)
T

(
nx,−ny

) = id, and we have also T
(
nx,−ny

)
A(x)T

(
nx,ny

) =
A(n) , which demonstrates the rotational invariance of the system.

Interestingly, the boundary conditions (36) turn out to be unstable, since they do not satisfy the null-space condition 
(22) as can be easily checked after identifying

B(x) =
(

1 −1 0 0 0 0
0 0 1 0 −1 0

)
(38)

as boundary matrix in x-direction. To evaluate the stability condition (22) we consider the two null-vectors of A(x)

v(1) = (0,0,0,0,0,1), v(2) = (−1,0,0,1,0,0) (39)

and evaluating B(x)v(1,2) shows that the second boundary condition satisfies the nullspace condition while the first one not. 
The ansatz

qn = θ − θ(W ) + κ1 Rnn, Rnt = qt (40)

reveals that κ1 = 1 is the only choice for stable boundary conditions. In general, the coefficients of θ and Rnn must be 
identical. Note, that the second condition in (21) is satisfied for both the unstable boundary condition (36) and the stable 
one (40) with κ1 = 1.

We will test the effect of the unstable and stable boundary condition on the numerical method by considering a double 
cylinder domain

� =
{
(x, y) ∈R

2 | r2
0 ≤ x2 + y2 ≤ r2

1

}
(41)

with the parameters and heat source

r0 = 1/2, r1 = 2, θ
(W )
0 = 1, θ

(W )
1 = 1/2, f (x, y) = 2 − x2 − y2. (42)

Using cylindrical coordinates for the differential operators in (32) it is possible to derive an analytical solution for this setup 
both with the stable and unstable boundary condition. Due to symmetry the temperature depends only on the radius r and 
is given by

θ(r) = C1 + C2 ln(
r
) + 1

(
1

r4 − 1
r2 − 2

τ 2r2) (43)

τ τ 16 2 3
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Fig. 2. Empirical convergence study for radial solution of model System A with stable (red) and unstable (blue) boundary conditions over a range of 
relaxation times τ . The solid black line gives second order as reference. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

with two integration constants C1,2. In total the solution has four integration constants to be fixed by two boundary condi-
tions both on the inner and outer cylinder. In order to be able to evaluate the temperature we give the values for C1,2 for a 
set of relaxation times τ for the stable

stable BC’s τ = 0.1 τ = 1.0 τ = 10.0 τ = 100.0

C1 −5.460256952 2.612851381 14.44110466 139.9358019
C2 5.288321376 0.233772582 0.023497664 0.002482757

and unstable boundary condition

unstable BC’s τ = 0.1 τ = 1.0 τ = 10.0 τ = 100.0

C1 −6.000111913 3.13888898 24.0469612 221.3469642
C2 5.505007359 0.86140058 0.94960816 0.994396053

Note, that the main difference occurs for C2 in the case τ = 100.
We apply the discontinuous Galerkin approach (23) to the system (32) on a structured radial symmetric quadrilateral 

mesh with bi-linear elements. The boundary conditions are inserted on the odd variable components qn and Rnt such 
that the selector matrix X as discussed in Sec. 4 is only a simple permutation. For simplicity the element error e(θ)

K for 
temperature in element K is evaluated point-wise in the element centers and we then define the relative errors

L∞-error =
∥∥∥{e(θ)

K }K∈mesh

∥∥∥∞
max{θ(exact)

K }K∈mesh

, L2-error =
hmax

∥∥∥{e(θ)
K }K∈mesh

∥∥∥
2

max{θ(exact)
K }K∈mesh

(44)

where hmax is the maximal edge length of the mesh. The numerical results for different relaxation times τ ∈ {0.1, 1.0,10.0,

100.0} are shown in Fig. 2. Each plot shows the errors for the unstable boundary conditions in blue and for the stable 
conditions in red. Both relative L∞- and L2-errors for temperature are shown. The gray line gives a reference curve for 
second order convergence. For τ = 0.1 there is virtually no difference between the error curves. Indeed the difference of the 
analytical solutions is also small and in particular the value of Rnn , which makes the difference of the boundary conditions, 
is very small for small relaxation times. For increasing τ the errors for the unstable boundary conditions deteriorates and no 
convergence is visible in the case of τ = 100. The stable boundary conditions consistently show second order convergence 
in agreement with the bi-linear elements. Note that for τ = 100 the L∞-error is significant higher than the L2-error. This is 
due to small oscillation close to the wall. We will come back to this issue in Sec. 5.3.
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5.2. System B

The system of Hermite discretizations exhibits a hierarchical structure where a low order system is contained in a higher 
order one. We will mimic this by adding an additional variable to System A and obtain

∇ · q = f

∇θ + ∇ · R = − 1

τ
q

(∇q)dev + ∇ · ψ = − 1

τ
R

2(∇R)dev = − 1

τ
ψ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

where ψ is a third degree deviatoric tensor. Note the structure of the equations of combining a gradient of a lower order 
with a divergence of a higher order variable. In two dimensions the essential set of components are

U = (θ,qx,qy, Rxx, Rxy, R yy,ψxxx,ψxxy,ψxyy,ψyyy). (46)

System matrices, symmetrizer and rotation matrices for normal coordinates have a similar structure as in System A. We 
consider the system with the boundary conditions

qn = θ − θ(W ) + κ1 Rnn, Rnt = qt − v(W ) + κ2ψnnt, ψnnn = Rnn, ψntt = Rtt (47)

where the higher order conditions follow the structure of combining the normal flux of a variable with the tangential part 
of the variable as suggested from the kinetic boundary conditions. We have two boundary inhomogeneities given by θ(W )

and v(W ) . The two coefficients κ1,2 will be used to control stability. Note that v(W ) = 0 and κ2 = 0 corresponds to the case 
of System A in (40).

It is instructive to ask how the extension of the system affects the stability of the boundary conditions and the per-
formance of the numerical method. Indeed, in case of the enlarged system the null-space condition (22) changes and it 
turns out that the boundary condition for the temperature jump in (47) is stable independent of κ1. However, the boundary 
condition for Rnt is influenced by the null-space condition which requires κ2 = 2, or the coefficient of ψnnt being the double 
of the coefficient of qt . Inspection of the analytical solutions unveils that in case of radial symmetry the fields of qt and Rnt

are trivially zero and, hence, the crucial unstable boundary condition is not active. We will demonstrate the stability of the 
first boundary condition for a radial symmetric test case and investigate the instability for an angular solution.

Radial test case: As above, we consider the double cylinder geometry (41) and the parameters (42), together with v(W ) ≡ 0
and κ2 arbitrary. The analytical solution is now given by

θ(r) = C1 + C2 ln(
r

τ
) + C3 K0(λ2

r

τ
) + C4(I0(λ2

r

τ
) − 1) + 1

τ

(
1

16
r4 − 1

2
r2 − 2

3
τ 2r2

)
(48)

where I0 and K0 are modified Bessel functions of first and second kind. These describe layer modes of the solution and come 
with integration constants related to the higher order boundary conditions. The inhomogeneous part of the temperature 
remains unchanged. The values of the integration constants for two cases of relaxation times are given by

“stable” τ = 0.1 τ = 100.0 “unstable” τ = 0.1 τ = 100.0

C1 −5.540170055 266.8818134 C1 −5.72829680 267.1129464
C2 5.312471905 8.71180699 × 10−4 C2 5.391875027 1.43734302 × 10−3

C3 −18.6043756 −3.6386886 × 10−4 C3 −18.8512861 −6.1268167 × 10−4

C4 9.12125 × 10−9 3.194759 × 106 C4 9.11005 × 10−9 3.1950059 × 106

where “stable” corresponds to κ1 = 1 and “unstable” to κ1 = 0 in (47) in accordance to the investigation of System A.
The upper row of Fig. 3 shows the empirical errors for temperature for System B obtained in the same manner as in 

Fig. 2 for τ = 0.1 and τ = 100.0. There is hardly any difference between both cases of boundary conditions which is due to 
stability of the boundary conditions independent of κ1 in contrast to System A. The small difference is only due to different 
solutions that are to be approximated.

Angular test case: In order to see the influence of the unstable boundary condition we will construct a solution with angular 
dependence on the double cylinder geometry. The boundary inhomogeneity v W and an angular dependent heat source is 
chosen to be

v(W )
0 = 5, v(W )

1 = 0, f (r,ϕ) =
(

−2 + r2

2

)
cos(ϕ) (49)
5 9τ



76 M. Torrilhon, N. Sarna / Journal of Computational Physics 342 (2017) 66–84
Fig. 3. Empirical convergence study of radial (top) and angular (bottom) solutions of model system (B) with stable (red) and unstable (blue) boundary 
conditions. The solid black line gives second order as reference. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

while θ(W ) ≡ 0 and κ1 can be arbitrary. The analytical solution for temperature now reads

θ(r,ϕ) =
(

C1
1

r
+ C2r + C3 K1(λ2r) + C4 I1(λ2r) + 1

τ 3
(

28

135
r2τ 2 − 1

135
r4)

)
cos(ϕ) (50)

where I1 and K1 are again Bessel functions. The values for the integration constants are given for two cases. The unstable 
case uses κ2 = 0 and the stable case uses κ2 = 2 in (47)

stable τ = 0.1 τ = 100.0 unstable τ = 0.1 τ = 100.0

C1 −111.1391694 −3.5152617 × 10−5 C1 −113.6011896 4.4663663 × 10−4

C2 6.6605695353 −5.3008490 × 103 C2 6.6659777373 4.13783136 × 104

C3 −68.42914074 1.3936541 × 10−5 C3 −7.145508969 −3.2425996 × 10−4

C4 −1.54674 × 10−7 1.1607281 × 104 C4 −1.543674 × 10−7 −9.0825262 × 104

Fig. 3 shows the numerical errors for the angular setup in the lower row. The non-convergence for the unstable boundary 
conditions in case of large relaxation times is clearly visible and follows the same pattern as for System A.

We conclude that the stability of boundary conditions will be crucial when solving large systems of moment equations.

5.3. Different grids and higher order

Before we solve moment equations it is interesting to consider the influence of different mesh types and higher order 
to steady hyperbolic problems of the type (12) with boundary conditions (16). As an example system we will re-use Sys-
tem B in (45) and the double cylinder geometry (41). The angular solution with parameters (49) serves as a non-trivial 
test-problem. In that case the stable boundary conditions are given by (47) with κ2 = 2. We use Gmsh [13] to generate 
meshes of different type, namely structured quads, unstructured quads and unstructured triangles and the MOAB library 
[30] to handle the mesh in the DG implementation. Example grids of these three types are displayed in Fig. 4. Refined grids 
have not been obtained by cell division but re-generated by Gmsh with a smaller element size factor.

On quadrilateral meshes the DG method (23) has been employed with bi-linear Q 1- and bi-quadratic Q 2-elements, 
while the triangular meshes use linear P1- and quadratic P2-elements. Note, that the quadratic elements are formally 
capable to show third order of convergence. However, in our case the boundary of all meshes will be given by a polygonal 
approximation to the circular geometry for simplicity. Hence, higher than second order convergence will not be possible.
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Fig. 4. Example meshes for a double cylinder geometry with r0 = 0.5 and r1 = 2.0 obtained with gmsh.

Fig. 5. Empirical convergence study for model system (B) on structured, unstructured quadrilateral, and triangular grids. The solid black line gives second 
order as reference.

The empirical errors for the angular solution of System B are shown in Fig. 5. The figure shows the relative L∞-error 
(44) of temperature for four different relaxation times τ ∈ {0.1, 1.0, 10.0, 100.0}. Each plot shows the results for linear 
(dashed) and quadratic (solid) elements on structured, quadrilateral and triangular grids. All error curves show essentially 
second order convergence in agreement with the polygonal domain used. For small relaxation times the element order 
and grid regularity have no influence and the error shows the same level for all elements. For increasing relaxation times 
the curves separate. The higher order methods show a significant improvement of the error constant in comparison with 
linear methods. Inspection of the actual solutions shows that the quadratic elements are performing better especially at the 
boundary where small oscillations are further suppress in comparison to the linear results. We conclude that high order 
is beneficial even on a polygonal domain when computing solutions for larger relaxation times. Note that due to a scaling 
argument larger relaxation times are equivalent to a two-cylinder geometry with smaller radii. Hence, geometries with 
stronger curvature may also benefit from higher order.

As expected the structured mesh shows the smallest errors, while unstructured triangular and quadrilateral meshes 
perform comparably. Overall, different grids do not influence the error as much as the order of the elements.

The results show a decent performance for the DG method applied to moment-type system of equations. Further inves-
tigations, e.g., on grids with iso-parametric elements for better boundary approximation or p-adaptivity towards stronger 
curvature, are left for future work.
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5.4. Fluid dynamic case

As next step, we will consider small realistic systems obtained from the Boltzmann discretization (10) that describe fluid 
dynamic equations. When choosing the variable vector

U = (ρ, vx, v y, θ,σxx,σxy,σyy,qx,qy) (51)

with density ρ , velocity components vx , v y , temperature θ , stress tensor components σxx, σxy, σyy and heat flux compo-
nents qx, qy , the moment system (10) gives the steady linear 13-moment-equations in the form

ρ0∂ j ṽ j = 0

θ0∂iρ̃ + ρ0∂i θ̃ + ∂ jσ̃i j = 0

ρ0θ0∂ j ṽ j + ∂ j q̃ j = 0 (52)

4

5
∂〈i q̃ j〉 + 2ρ0θ0∂〈i ṽ j〉 = − 1

τ
σ̃i j

θ0∂ jσ̃i j + 5

2
ρ0θ0∂i θ̃ = − 1

τ

2

3
q̃i

where we will set the background values ρ0, θ0 to unity by proper scaling. If we drop the underlined terms, the last two 
equations turn into the laws of Navier–Stokes for stress tensor and Fourier’s law for heat flux. This NSF-system can be 
written in the generic form (12) with system matrix A(x) given by

i 1 2 2 2 3 4 4 5 6 7 8
j 2 1 4 5 6 2 8 2 3 2 4
A(x)

i j 1 1 1 1 1 1 1 4
3 1 − 2

3
5
2

(53)

in sparse triplet format. As in the case of the model systems it is possible to derive an explicit analytical solution for the NSF 
system on the double cylinder geometry (41). At the inner cylinder we use the simple jump and slip boundary conditions

vn = 0, qn = χ̃ �θ, σnt = χ̃ Vt (54)

with simplified accommodation factor χ̃ = 1 and parameters θ(W ) = 1 and v(W )
t = 0. The outer cylinder provides a finite 

domain, but is a somewhat artificial interface mostly for numerical purposes. We model this outer cylinder as inflow/outflow 
boundary, but will use boundary conditions which are as close as possible to the standard wall conditions (54). In fact, we 
will only modify the first equation in (54) and replace it by

γ (vn − v(W )
n ) = χ̃ (p − p(W ) + σnn) (55)

which mimics the boundary conditions for heat flux and temperature and satisfies the null-space condition (22). A value 
γ = 0 allows to enforce pressure boundary conditions such that p(W ) = p +σnn holds. In that case v(W )

n can be set arbitrarily, 
while v(W )

t must be prescribed in the last equation of (54). Alternatively, a limiting value γ → ∞ allows to prescribe inflow 
conditions with vn = v(W )

n and in this case p(W ) is arbitrary. Note that inflow boundary conditions are often difficult because 
the flow may come with a non-equilibrium which is difficult to prescribe. Typically, initial layers are to be expected which 
adjust the artificial boundary value to the bulk. In the current test case this is not an issue because we can easily adjust 
the analytical solution to what ever is used in the numerical method. For the numerical method finite values for γ have a 
stabilizing effect and lead to better convergence behavior of the numerical method. We will use γ = ε and γ = 1/ε with 
ε = 10−5 to model pressure and normal velocity boundary conditions on both cylinders.

For our example we assume the flow is driven by a pressure profile p(in) = −p0nx along the outer circle with nx the 
x-component of the outer normal vector. A temperature θ(in) = 2 is used at the outer cylinder. The velocity is set to v(in)

n =
v0nx and v(in)

t = −v0ny with v0 = 1. Inspection of the analytical solution shows that a pressure constant p0 = 0.23 is 
consistent with a velocity vx ≈ 1 along the outer cylinder. An impression of the solution is given in Fig. 6.

The left plot of Fig. 7 shows the L∞-error of various fields of the Navier–Stokes–Fourier system (52) solved for flow and 
heat conduction between two cylinders at τ = 0.1. The solid lines show the results for linear P1-elements on triangles. 
For comparison the results of bi-quadratic Q 2-elements on a structured grid are also displayed with dashed lines. All 
fields including non-equilibrium quantities like stress and heat flux show second order convergence. As expected from the 
model systems higher order and structured grids give a better error constants, but at this relatively low relaxation time the 
difference is not significant.

The regularized 13-moment equations in steady first order, two-dimensional formulation are based on the 16 variables

U = (ρ, vx, v y, θ,σxx,σxy,σyy,qx,qy,mxxx,mxxy,mxyy,myyy, Rxx, Rxy, R yy) (56)
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Fig. 6. Test case for the steady, linear Navier–Stokes–Fourier system with τ = 0.1. Left: temperature field (colors between 1.32/blue and 1.92/red) with 
velocity stream lines. Right top: heat flux component qx (contours from −0.236 to 0.236). Right bottom: shear stress component σxy (contours from 
−0.029 to 0.116). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Empirical error analysis for various field quantities of flow and heat conduction between two cylinders. Results for the NSF and R13 system on linear 
triangular elements and bi-quadratic structured quads. The solid black line gives second order as reference.

which include a third degree tensor m and an additional 2-tensor R . The additional scalar fourth degree moment � is 
identically zero in the present setting. The two additional variables enter the system (52) in the last two equations which 
now read

∂km̃i jk + 4

5
∂〈i q̃ j〉 + 2ρ0θ0∂〈i ṽ j〉 = − 1

τ
σ̃i j (57)

∂ j R̃ i j + θ0∂ jσ̃i j + 5

2
ρ0θ0∂i θ̃ = − 1

τ

2

3
q̃i (58)

including the terms of the 13-moment equations. The constitutive equations for m and R read

3θ0∂〈i σ̃ jk〉 = − 1

τ

3

2
m̃i jk,

28

5
θ0∂〈i q̃ j〉 = − 1

τ

7

6
R̃ i j (59)

and close the system. Consequently, the system matrices of the R13 equations include the values given in the table above, 
but add the following triplets

i 5 6 7 8 9 5 6 7 8 9 10 11 12 12 13 14 15 16
j 8 9 8 5 6 10 11 12 13 15 5 6 5 7 6 8 9 8
A(x)

i j
8

15
2
5 − 4

15 1 1 1 1 1 1
2

1
2

9
5

8
5 − 2

5 1 − 6
5

56
15

14
5 − 28

15

which results in a 16 × 16 matrix with 29 non-zero entries. The R13 equations are solved on the double cylinder geometry 
in an identical setting as the NSF system above. Following the approach in [32,38] it is again possible to find an analytical 
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solution. The R13 system requires more boundary conditions which read

vn = 0, qn = χ̃ (2�θ + 1

2
σnn + 2

5
Rnn),

σnt = χ̃ (Vt + 1

5
qt + mnnt), mnnn = χ̃ (−2

5
�θ + 7

5
σnn − 2

25
Rnn) (60)

Rnt = χ̃ (−Vt + 11

5
qt − mnnt),

1

2
mnnn + mntt = χ̃ (

1

2
σnn + σtt)

where the underlined terms have been adjusted to satisfy the null-space condition (22). For the modification the following 
ad-hoc strategy has been adopted which has been used similarly in [24]. The null-space vectors of the system matrix have 
been computed and tested with the boundary matrix. For those conditions that give a non-vanishing result an ansatz has 
been used that changed only the coefficient of the largest moment in the equation. In this way the null-space condition 
implies a unique modifications of the boundary conditions. The resulting boundary conditions (60) for R13 are identical to 
the Onsager boundary conditions in [24]. It could also be shown numerically that the condition (ii) in (21) holds.

The parameters of the inner and outer cylinder are identical to those used in the NSF case. In particular, we also replace 
the first condition in (60) by the inflow model (55) and use again p(in) = −p0nx . From the R13 analytical solution we find 
that p0 = 0.27 is a consistent value for the pressure-driven inflow.

The L∞-error of various fields from the R13 simulation at τ = 1.0 is shown in the right plot of Fig. 7. A similar behavior 
as in the NSF case can be observed. The difference in error constant between the linear triangular elements and the struc-
tured quadratic elements is more pronounced because of the larger value of the relaxation time. As discussed for the model 
system in Sec. 5.3 it might be necessary to use higher order at least near the boundary to achieve better errors on triangles.

6. Example channel flow with obstacles

The previous sections have introduced and tested a numerical approach to the generic system (12). We will now 
demonstrate the usefulness of the approach for full Hermite discretizations of the Boltzmann equation for more complex 
geometries and present a basic model error estimation approach. As a test case we consider a curved channel containing 
three obstacles, which combines aspects of realistic internal and external flows. Both the channel walls and the obstacles 
are given as smooth curves constructed from B-splines with the control points

lower wall = {(−2,0), (0,0), (0,−2)}
upper wall = {(−2,1), (1,1), (1,−2)}
obstacle 1 = {(−1.4,0.35), (−1,0.5), (−0.6,0.35), (−0.6,0.6), (−1,0.75), (−1.4,0.75)} (61)

obstacle 2 = {(−0.1,−0.2), (0.25,−0.25), (0.4,−0.1), (0.1,0), (−0.1,0.3), (−0.4,0.1)}
obstacle 3 = {(0.55,−0.8), (0.2,−1.2), (0.6,−1.3), (0.8,−0.9), (0.7,−0.4), (0.5,−0.4)}

where the points for the obstacles are used in a periodic manner. The channel inflow and outflow boundaries are given 
by the lines {(0, −2), (1, −2)}, and {(−2, 0), (−2, 1)}. A sketch of the resulting geometry is presented in Fig. 8. The figure 
also displays the Gmsh-obtained triangular mesh which is used for the simulation results below, and some of its properties. 
The mesh has a refinement factor of three towards the obstacle walls. Quadratic P2-elements have been used in the entire 
domain for all simulations below. The flow is assumed to be pressure-driven from the lower to the upper channel end. 
Choosing the Knudsen number Kn = 0.5, – or a dimensionless relaxation time τ = 0.5 in (12) – results in a channel 
inflow width of 2 mean free paths. Note that the setup contains features that give rise to much larger Knudsen numbers. 
For example, the channel width decreases next to the obstacles by a factor two to three, which gives a Knudsen number 
increased by the same factor. Also the tip of obstacle 3 may be used to define a Knudsen number up to 20-fold larger than 
based on the inflow width. We will assume Maxwell’s accommodation model for all walls of the channel and the obstacle 
with identical temperature. As in the R13 case the boundary conditions for all moment models have been adjusted to 
satisfy the stability conditions (21) in such a way that only the coefficients of the highest moments are changed. Hence, in 
the hierarchy of models Maxwell’s accommodation conditions are perfectly recovered in the limit of infinite moments. The 
inflow will be modeled as described in Sec. 5.4 with dimensionless inflow pressure p1 = 1 and outflow pressure p0 = −1. 
Note, that due to the linear nature of the equations the results will be proportional to p1 − p0. The focus of the investigation 
will be on the steady flow pattern and stress distribution.

The first simulation result is obtained by the Navier–Stokes–Fourier system (52) with first order jump and slip conditions. 
Due to linearity the flow solution is equivalent to that of a Stokes problem. The left hand side of Fig. 9 shows the flow lines 
and the contours of a stress tensor invariant of the Stokes result. The stress tensor invariant is given by

σv =
√

3
σi jσi j =

√
3
(
σ 2

xx + σ 2
xy + σxxσyy + σ 2

yy
)

(62)

2
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Fig. 8. Setup of a curved micro-channel with three obstacles. The flow is pressure driven and all walls are modeled based on full accommodation with the 
same temperature.

Fig. 9. Results for the channel flow obtained with the linear Navier–Stokes–Fourier system. Left: Stream lines are displayed with contours of the stress 
invariant σv . Right: relative error for stress invariant of Stokes estimated with a Nd = 4(5) Boltzmann discretization. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

also known as ‘equivalent tensile stress’ or ‘von-Mises stress’. It provides a useful reduction of the stress tensor to a scalar 
quantity. The stress invariant is scaled by the pressure difference that drives the channel. The stress shows a complicated 
pattern with high values at the tips and ends of the obstacles. Values beyond the given contour color scale are blanked out 
in white.

In order to estimate the model error present in the Stokes simulation we use a refined Hermite-discretization based on 
not only the NSF variables but include all components of the fourth (Nd = 4) and fifth coefficient tensor (Nd = 5) in (4). It is 
known that the Hermite expansion shows an oscillatory convergence behavior between odd and even approximation orders, 
see e.g., [21]. For this reason we will average the result of odd and even order and indicate the result by, e.g., Nd = 4(5). 
A similar approach was used in [1,33,19]. If we use this result as an approximation to the true Boltzmann solution we can 
estimate the error of the Stokes simulation. The right hand side of Fig. 9 shows the estimated error of the stress invariant σv

as a percentage after scaling with the global maximal value of stress observed in the simulation. Positive values represent 
an over-estimated and negative values an under-estimated stress. The classical fluid dynamic result mostly gives too large 
values for stress, with up to 60% error. Only the shear stress values at the channel walls are too small. It is typical for 
Boltzmann solutions to give more dissipation and thus lower stress levels than Stokes.

The left plot of Fig. 10 shows the stream lines and the stress invariant σv for the Nd = 4(5) Boltzmann simulation, 
which was used to estimate the Stokes error. The stress contours are clearly different and close inspection also reveals 
some changes in the stream line behavior. Obviously, also the result of the Hermite discretization Nd = 4(5) is based on 
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Fig. 10. Results for the channel flow obtained with the linear Nd = 4(5) Boltzmann discretization. Left: Stream lines are displayed with contours of the 
stress invariant σv . Right: relative error for stress invariant of the left result estimated with a Nd = 6(7) Boltzmann discretization. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

Fig. 11. Results for the channel flow obtained with the linear Navier–Stokes system for a small mean-free-path setting. Left: Stream lines are displayed with 
contours of the stress invariant σv . Right: relative error for the stress invariant of the left result estimated with a Nd = 3(4) Boltzmann discretization. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

an approximative model for the Boltzmann equation and affected by model errors. The hierarchical framework presented 
in this paper allows to estimate this error by considering a finer discretization. We use Nd = 6(7) and compute the error 
in the analogous way as for the Stokes result. The contours on the right hand side of Fig. 10 show the relative estimated 
errors. Most of the domain now exhibit an error of only 2–5%. A remaining area with large errors is found at the top of 
obstacle 3. As discussed above this region also shows the largest value for the local Knudsen number due to the strongly 
curved boundary. To produce a reliable result for this region even finer Hermite-discretizations are needed, possibly in a 
locally adapted manner. The methods of this paper are ready for local model-refinement, but the investigation of such an 
approach is left for future work.

As we have seen the classical fluid dynamic model fails for the large Knudsen number scenario above. The model error 
is quickly detected by using a relatively coarse Boltzmann model while quantitative reliable results are obtained only by an 
even finer representation. It is instructive to investigate a lower Knudsen number case in which the gas in the channel is 
more dense or of less microscopic scale. Fig. 11 displays the simulation result for the channel with a 50 times smaller mean 
free path. The left hand side plot shows again the results of the Stokes equation with stress contours and stream lines. This 
can be directly compared to the left hand side of Fig. 9. Note, that the maximum stress value is now at a different place and 
also the stream lines are clearly different. However, this result can be estimated to be of very high accuracy. The right hand 
side shows the estimated model error based on a very coarse Boltzmann simulation with Nd = 3(4). The majority of the 
channel domain shows error of ±1.5% and only very close to the obstacle tips the error grows to 5–15%. It now depends on 
the purpose of the simulation if these regions are of interest and a fine simulation is necessary.
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To give some impression about the performance of the simulations we give some basic figures in the table below.

Representation Stokes Nd = 3 Nd = 4 Nd = 5 Nd = 6 Nd = 7

total run time 5.11s 11.52s 37.52s 51.56s 83.74s 194.01s
total number of unknowns (×105) 1.16 1.67 2.83 3.60 4.37 6.43
non-zeros in global matrix (×106) 7.19 15.62 40.59 61.37 86.98 177.37

All computations have been conducted on 16 Intel Xeon CPUs (2.67 GHz) with shared memory. If the Stokes data is taken 
as reference, it follows that low Knudsen simulations can be estimated with about 2- to 7-times the computational time 
and less than 3-times the storage requirements, while the large Knudsen number case needed up to 20 times the time and 
6 times the storage. Note, that 80–90% of the run time is spend in the linear solve of the global matrix, currently based 
on the sparse direct solver Pardiso [25]. Obviously, the linear solve allows many possibilities of optimization, for example a 
multi-grid cycle through models instead of grids.

7. Conclusions

The paper presented a numerical framework for a hierarchical solution technique for the Boltzmann equation based on 
Hermite discretizations. The coarse representations give a valid and efficient solution the fluid dynamic equations, while 
finer representations allow to solve the Boltzmann equation accurately. We demonstrate the capability of the method both 
on simplified model problems and for realistic complex geometries in two space dimensions. It turned out that the stability 
of boundary conditions is essential for convergence of the numerical method especially on non-Cartesian domains.

The results of this paper follow a proof-of-concept approach such that several questions and challenges remain. Besides 
the obvious aspects of the numerical method, like higher order boundary elements, grid adaptivity, moving meshes, the 
possibility of model error estimation and m(odel)-refinement is largely left for future work. Important extensions would 
be time-dependency which leads to interactions of waves and dissipation like in [31], and to add nonlinear terms like 
convection and heat dissipation. Both time-dependency and nonlinearity would be implemented in an iterative fashion 
exploiting the existing implicit method for the steady linear part. Furthermore, residual-based error indicators for the model 
error as well as adjoint-based techniques for local model refinement can be explored.
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