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Abstract. Snapshot matrices of hyperbolic equations have a slow singular value decay, re-4
sulting in inefficient reduced-order models. We develop on the idea of inducing a faster singular5
value decay by computing snapshots on a transformed spatial domain, or the so-called snapshot cal-6
ibration/transformation. We are particularly interested in problems involving shock collision, shock7
rarefaction-fan collision, shock formation, etc. For such problems, we propose a realizable algorithm8
to compute the spatial transform using monotonic feature matching. We consider discontinuities and9
kinks as features, and by carefully partitioning the parameter domain, we ensure that the spatial10
transform has properties that are desirable both from a theoretical and an implementation stand-11
point. We use these properties to prove that our method results in a fast m-width decay of a so-called12
calibrated manifold. A crucial observation we make is that due to calibration, the m-width does not13
only depend on m but also on the accuracy of the full order model, which is in contrast to elliptic and14
parabolic problems that do not need calibration. The method we propose only requires the solution15
snapshots and not the underlying partial differential equation (PDE) and is therefore, data-driven.16
We perform several numerical experiments to demonstrate the effectiveness of our method.17

1 Introduction Several problems of practical interest are modeled using pa-18

rameterized PDEs of the form19

Lu(x, µ) = 0 ∀(x, µ) ∈ Ω×D.(1.1)2021

Here, L is some differential operator, µ ∈ D is some parameter which can encode,22

for example, different material properties, and x ∈ Ω ⊂ Rd is a space point. We23

refer to the book [20] for an elaborate discussion on different parameterized PDEs.24

Note that D can contain time and in the model problem that we consider later, it25

is indeed the time domain. Nevertheless, the present discussion applies to general26

parameter domains. Often, an exact solution to the above problem is unavailable27

and one seeks an approximation u(·, µ) ≈ uM (·, µ) in a finite-dimensional space XM28

spanned by some basis {φi}i=1,...,M . The approximation uM (·, µ) is what we refer to29

as the full-order model (FOM). We assume that XM ⊂ L2(Ω).30

In a multi-query setting, where a solution is required at several different parameter
instances, computing a FOM is computationally expensive and infeasible. Reduced-
order models (ROMs) aim to reduce this cost by splitting the solution algorithm into
an online-offline phase. A broad description of these two phases is as follows—see
[2] for further details. First, in the offline phase, one computes a snapshot matrix
S ∈ RM×K given as

S := (UM (µ1), . . . , UM (µK)) ,
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where UM (µ) ∈ RM is a vector containing all the degrees of freedom of uM (·, µ)31

i.e., (UM (µ))j := 〈φj , uM (·, µ)〉L2(Ω) where {φj}j is a set of basis functions for XM .32

The parameters {µi}i=1,...,K can be chosen uniformly, randomly, or using a greedy33

procedure based on an a-posteriori error indicator [6, 7, 14, 29].34

In the online phase, one approximates UM (µ) in the span of the first m left sin-35

gular vectors of S, or the so-called Proper-Orthogonal-Decomposition (POD) modes36

of S. We collect these vectors in the matrix Um(S) and with U red
m (µ) we represent an37

approximation to UM (µ) in range(Um(S)). The online phase is efficient only if any38

given error tolerance of practical interest39

‖U red
m (µ)− UM (µ)‖2≤ TOL,(1.2)4041

can be achieved with a sufficiently small value (preferably �M) of m.42

At least empirically, the singular value decay rate of the snapshot matrix is a good43

indicator of the decay rate of the error in (1.2); see [20, 22, 26]. Let σi(S) denote the44

i-th singular value of S. Then, for all i ∈ {1, . . . ,K}, we find45

‖UM (µi)−Πrange(Um(S))UM (µi)‖2≤ ‖S − Um(S)Um(S)TS‖F=

√√√√ K∑
i=m+1

σi(S)2

︸ ︷︷ ︸
=:Ξm(S)

.

(1.3)

46

47

Above, ‖·‖F represents the Frobenius norm, Π� represents an orthogonal projection48

operator with � being a place holder for some finite-dimensional space, and (·)T49

represent the transpose of a matrix. If {µi}i=1,...,K is sufficiently dense in D then,50

with the above relation, we expect the error in (1.2) to decay at a similar rate as51

Ξm(S).52

For hyperbolic problems, there is ample numerical evidence (also provided by the53

current article) supporting that Ξm(S) decays slowly resulting in an inefficient ROM54

[3, 17, 19, 22]. Therefore, the first step toward developing an efficient ROM is to55

induce a faster singular value decay in the snapshot matrix, or to so-called calibrate56

the snapshot matrix. Following the works in [3, 22, 32], we perform calibration by57

computing snapshots on a transformed domain. This results in a calibrated snapshot58

matrix that reads59

(1.4)
Scalib := (Ucalib,M(µ1), . . . , Ucalib,M(µK)) ,

where (Ucalib,M(µ))j := 〈φi, uM (ϕM (·, µ), µ)〉L2(Ω) .
60

Above, ϕM (·, µ) : Ω→ Ω is a spatial transform that satisfies61

(1.5)
(P1) ϕM (·, µ) is a homeomorphism,

(P2) ‖DxϕM (·, µ)−1‖L∞(Ω), ‖DxϕM (·, µ)‖L∞(Ω)≤ K1,
62

where, K1 > 1 is a user-defined constant and D� denotes a weak-derivative with63

� being a place holder for a variable. We can think of ϕM as a way of artificially64

introducing the desired regularity in the snapshots along the parameter domain, which65

eventually results in a fast singular value decay. For further clarification, we refer to66

the numerous examples and arguments in [3, 24, 32] and to the later sections of our67

work. The properties (P1) and (P2) are desirable from both a theoretical and a68

numerical implementation standpoint. They will be particularly helpful in studying69
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the m-width of a so-called calibrated manifold defined below. Later sections provide70

further elaboration.71

Note that snapshot calibration is an offline step. In the online phase, we can72

use the POD modes of Scalib to approximate Ucalib,M(µ) and then recover an ap-73

proximation to UM (µ) using ϕM (·, µ)−1, or its approximation. Development of a74

PDE-based online algorithm that is stable, efficient and competitive with finite-75

element/volume/difference type approximations is another challenging task and we76

plan to tackle it in the future—preliminary, but noteworthy, work in this direction77

can be found in [3, 16, 25, 27].78

We propose a data-driven and feature-matching-based algorithm to compute ϕM79

that satisfies (P1) and (P2). Let us elaborate on what we mean by feature matching.80

A feature is either a discontinuity or a kink (defined precisely later) in a snapshot81

uM (·, µ), and with zM (µ) we represent its spatial location. We want the feature loca-82

tions in uM (ϕM (·, µi), µi) to coincide with those in some reference snapshot uM (·, µref)83

i.e.,84

ϕM (zM (µref), µi) = zM (µi), ∀i ∈ {1, . . . ,K}.(1.6)8586

We extend ϕM (·, µi) to Ω by piecewise linear interpolation. We allow for multiple-87

features, feature interaction and feature formation. In order to deal with these cases,88

we propose an adaptive selection of the reference snapshot uM (·, µref) such that (P1)89

and (P2) are satisfied. In Section 2 we discuss feature matching in further detail.90

Note that due to its data-driven nature, our algorithm treats all discontinuities the91

same i.e., it does not differentiate between shocks and contact discontinuities.92

Most of the previous model-order reduction methods for hyperbolic equations93

were restricted to either periodic or extrapolated boundary conditions—for instance,94

see [15, 18, 22–24]. The reason being that these works relied on either a (or multi-95

ple) spatial shift, a Lie group action, or an optimal transport map, all of which have96

some restrictions on the boundary conditions. We show that general time-dependent97

boundary conditions are naturally included in the feature matching framework by98

defining the boundary points as additional features. The numerical experiments in-99

cluded in Section 5 showcase that our method works well for time-dependent boundary100

conditions.101

In an abstract sense, an approximation of Ucalib,M(µ) in the POD modes of Scalib102

is a linear approximation of the so-called calibrated snapshot manifold defined as103

Mcalib,M (D) := {ΠXMuM (ϕM (·, µ), µ) : µ ∈ D}.(1.7)104105

A linear approximation can be accurate only if the m-width of Mcalib,M (D) decays106

fast. We prove that this is indeed the case for the calibrated manifold resulting from107

feature matching. We provide a bound for the m-width of Mcalib,M (D) in case the108

FOM is a finite volume (FV) scheme. Our bound depends explicitly on both m and109

M . To the best of our knowledge, no earlier works provide such a bound, making our110

work the first of its kind that provides a theoretical justification for feature matching.111

Note that, compared to the definition of the calibrated manifold proposed in [3], our112

definition is closer to what is actually used in practice—our definition uses the FOM113

whereas the one in [3] uses the exact solution of the evolution equation (1.1). The114

bounds on the m-width are discussed in detail in Section 3.115

We propose to match both kinks and discontinuities. Usually, one would only116

match discontinuities—see for instance [3, 32]. This could be because (i) kinks get117

smeared out due to numerical dissipation and go undetected, or (ii) because, despite118

This manuscript is for review purposes only.



4 NEERAJ SARNA, JAN GIESSELMANN, AND PETER BENNER

the kinks being detectable, they are not included in the set of features. For the first119

case, we show that, due to smearing, the FOM has sufficient regularity to ensure a120

fast m-width decay. For the second case, we show that matching both kinks and dis-121

continuities provides a better calibration than only discontinuity matching. Precisely,122

in Section 3, we prove that both kink and discontinuity matching results in a cali-123

brated manifold with an m-width that is O(m−2), which is O(m−1) times better than124

what only discontinuity matching offers. To summarize, we establish that if kinks are125

detectable, then it is advantageous to include them in the feature set.126

In Section 5, we perform several numerical experiments showcasing the effective-127

ness of our method. Mindful of the above discussion, we consider highly accurate128

approximations in XM where both kinks and discontinuities can be identified. For129

this reason, we consider the best-approximation in XM and show that kink and dis-130

continuity matching results in a fast singular-value decay and that both kink and131

discontinuity matching is better than only discontinuity matching.132

Our method is explicit in the sense that we explicitly compute the feature locations133

and match them. In the context of model-order reduction, explicit methods have134

been used before (see [5, 28]), but never for problems involving multiple-features and135

feature interaction. Rather than using an explicit method, one can also solve an136

optimization problem and expect the features to be matched implicitly [16, 32]. The137

following reasons motivated our choice of an explicit method. Firstly, the optimization138

problem in implicit methods is (usually) non-convex and non-linear. If the samples139

{µi} are not chosen carefully, then the minimization problem can get stuck in sub-140

optimal local minima, resulting in a Scalib with a slow singular value decay. Secondly,141

explicit methods rely on shock tracking/identifying techniques that are well-studied142

for hyperbolic problems [4]. Thirdly, in explicit methods, it is easier to quantify (at143

least empirically) the error in identifying the true feature location, which is helpful144

in quantifying the m-width decay rate. Lastly, with an access to feature locations, it145

easier to satisfy (P1) and (P2), which otherwise have to be included as constraints in146

the optimization problem. To the best of our knowledge, none of the implicit methods147

can impose such constraints.148

We mention that apart from snapshot calibration, in the context of hyperbolic149

equations, other strategies to construct an accurate approximation space include on-150

line adaptivity of basis [11, 19], embedding of the solution manifold in the Wasserstein151

metric space [9] and the use of auto-encoders [13]. Comparison of the approximation152

space resulting from snapshot calibration to these other works is an interesting ques-153

tion in its own right and we plan to tackle it in the future.154

2 Feature Matching As a model problem, we interpret time as a parameter155

and consider the time-dependent hyperbolic conservation law in one space dimension156

given by157

(2.1)
∂tu(x, t) + ∂xf(u(x, t)) = 0, ∀(x, t) ∈ Ω×D, u(x, t = 0) = u0(x) ∀x ∈ Ω,

u(x, t) = G(x, t), ∀(x, t) ∈ ∂Ω×D.
158

Above, D := [0, T ] is the time-domain with some final time T > 0, u0 is the initial159

data and G is some (given) boundary data. We interpret the boundary conditions160

in a weak-sense as described in [8]. The solution vector u maps Ω × D to RQ and161

f : RQ → RQ is a so-called flux function, where we allow Q ≥ 1. We restrict to162

a one-dimensional spatial domain with Ω := (xmin, xmax) ⊂ R. We consider a FV163

approximation space XM where we partition Ω into M sub-intervals of the same size164
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∆x = (xmax − xmin)/M i.e.,165

Ω =

M⋃
i=1

Ii, |Ii|= ∆x.(2.2)166

167

For notational simplicity, we consider a uniform spatial grid—an extension to non-168

uniform grids is straightforward.169

For notational simplicity, we restrict our discussion to scalar problems i.e., Q = 1170

in (2.1). An extension to systems follows by applying the proposed method to every171

component of the solution vector. We find ϕM such that the feature locations in172

uM (ϕM (·, tk), tk) match to those in some reference snapshot uM (·, tref). The method-173

ology used to compute ϕM drives the choice for uM (·, tref). For the present discussion,174

we choose175

tref = 0.(2.3)176177

The motivation behind our choice becomes clear as we proceed. First, we define the178

notion of a feature. Note that the definition implicitly assumes that the exact solution179

has a finite number of features, a reasonable assumption for most problems of practical180

interest.181

Definition 2.1 (Feature). A feature is either a discontinuity or a kink in the182

solution. For any t ∈ D, let there be p(t) ∈ N of such features. With zi(t) we183

represent the i-th feature location in u(·, t). Furthermore, with zM,i(t) we denote an184

approximation to zi(t) computed using uM (·, t). Assuming that between the locations of185

discontinuities u(·, t) has a weak derivative, we define a kink location as a space point186

where this weak derivative is discontinuous. Furthermore, we define the boundary187

points of Ω as two additional feature locations i.e.,188

z0(t) = zM,0(t) = xmin, zp(t)+1(t) = zM,p(t)+1(t) = xmax.(2.4)189190

Without loss of generality, we assume the ordering

zM,0(t) < zM,1(t) < · · · < zM,p(t)+1(t).

We want to match the same type of features i.e., kinks with kinks and disconti-191

nuities with discontinuities. To distinguish between these two types of features, we192

associate an identifier with a feature location and define it in the following.193

Definition 2.2 (Identifier). The identifier Γ : Ω → {0, 1} acts on a feature194

location and returns zero or one depending on whether there is a discontinuity or a195

kink at that location, respectively. For convenience, we collect all the identifiers in a196

vector γM (tk) ∈ Rp(t) defined as (γM (tk))i = Γ(zM,i(tk)).197

We ask the following question. For some t ∈ {tl}l=1,...,K , given a snapshot uM (·, t)198

and a reference snapshot uM (·, tref), does there exist a ϕM that satisfies (P1) and (P2)199

and, in the sense of (1.6), matches the features between uM (ϕM (·, t), t) and uM (·, tref)?200

We show that the answer to this question is yes if the following three conditions are201

satisfied202

(2.5)

(C1) p(t) = p(tref), (C2) γM (t) = γM (tref),

(C3)
1

K1
≤ |zM,i+1(tref)− zM,i(tref)|

|zM,i+1(t)− zM,i(t)|
≤ K1 ∀i ∈ {0, . . . , p(t)}.

203
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Above, K1 is the same as that defined in (1.5). The conditions (C1) and (C2) im-204

ply that the two snapshots have the same number and the same types of features.205

Furthermore, relative to uM (·, tref), (C3) prevents the features in uM (·, t) from either206

coming too close or from moving very far away from each other. One can interpret207

the conditions (C1)-(C3) as a way of measuring the similarity of a snapshot to the208

reference snapshot, and if similar, we can find a ϕM between the two snapshots that209

satisfies (P1) and (P2). If (C1)-(C3) is satisfied, then we say that uM (·, t) matches to210

uM (·, tref) and for convenience, represent the matching by the notation211

(C1), (C2) and (C3) ⇔ uM (·, t)↔ uM (·, tref).(2.6)212213

2.1 Construction of ϕM Assume that uM (·, t) ↔ uM (·, tref) then feature
matching provides

ϕM (zM,i(tref), t) = zM,i(t), ∀i ∈ {0, . . . , p(t) + 1}.

Note that (C2) ensures that the above relation does not match discontinuities to214

kinks or vice-versa. Furthermore, including the endpoints of Ω as features implies that215

ϕM (∂Ω, t) = ∂Ω. To extend ϕM (·, t) to Ω, we perform a piecewise linear interpolation,216

which, for i ∈ {0, . . . , p(t)} and x ∈ [zM,i(tref), zM,i+1(tref)], provides217

(2.7)

ϕM (x, t) =

(
x− zM,i(tref)

zM,i+1(tref)− zM,i(tref)

)
zM,i+1(t)

+

(
x− zM,i+1(tref)

zM,i(tref)− zM,i+1(tref)

)
zM,i(t).

218

Trivially, ϕM (·, t) is continuous upto the boundary with ϕM (∂Ω, t) = ∂Ω, which,219

due the ordering of the features in Definition 2.1, implies that ϕM (·, t) is strictly220

increasing. Thus, ϕM (·, t) is a homeomorphism. Furthermore, the following relation221

and (C3) provides (P2). For all t ∈ {tl}l=1,...,K and i ∈ {0, . . . , p(t)}, we find222

(2.8)

1

K1
≤ DxϕM (·, t)|(zM,i(tref ),zM,i+1(tref ))

=
|zM,i+1(tref)− zM,i(tref)|
|zM,i+1(t)− zM,i(t)|

≤K1.

223

We elaborate on why it is desirable to have (P1) and (P2).224

1. Onto property: as mentioned in the introduction, eventually in an online225

phase we want to approximate the calibrated snapshot Ucalib,M(t) in span of226

the POD modes of Scalib. We expect such an approximation to be accurate if227

ϕM (·, t) is an onto function. We also refer to the arguments made in [32] and228

our analysis in Section 3 indicating that the onto property is desirable. At229

least intuitively, the following example further elaborates on the desirability230

of the onto property. Suppose that the characteristics curves originating from231

t = 0 pass through every point in Ω for some t∗ ∈ D. Then a ϕM (·, t∗) that232

is not onto, will discard some information in uM (·, t∗), which is undesirable233

and inconsistent with the characteristics.234

2. Invertibility: the analysis in Section 3 indicates that the invertibility of235

ϕM (·, t) is desirable.236

3. Continuity and monotonicity: continuity and monotonicity of ϕM (·, t) ensure237

that, as compared to uM (·, t), no new discontinuities appear in uM (ϕM (·, t), t).238

For the same reason, ϕM (·, t)−1 should also be continuous. Points (1)-(3) im-239

ply that ϕM (·, t) should be a homeomorphism i.e., it should satisfy (P1).240
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T0

T

t

x

Fig. 1: Time trajectory of two discontinuities that merge to form a single discontinuity.

4. Bounds on the derivatives: the bound on the m-width, which we present later241

in Section 3, scales with ‖DxϕM (·, t)‖L∞(Ω) and ‖DxϕM (·, t)−1‖L∞(Ω), which242

motivates (P2).243

2.2 Open questions The above formulation leaves the following questions244

open. The rest of the article (tries) to answer them.245

• How to handle the cases where (C1)-(C3) are not satisfied?246

• How to determine the feature locations in practise?247

• Why does feature matching result in a fast singular value decay?248

In relation to the first question, it is easy to violate (C1). Consider Figure 1 that249

shows the time-trajectory of two discontinuities in an otherwise smooth function. At250

t = T0, two discontinuities interact to form a single one, changing the value of p(t)251

from two to one. We handle such cases by partitioning {tl}l=1,...,K into subsets and252

choosing (different) suitable reference snapshots such that (C1)-(C3) is locally satisfied253

in each of the subsets. The details are discussed in Subsection 2.3.254

To answer the third question rigorously, we need decay estimates for the singular255

values of the calibrated snapshot matrix Scalib. Such estimates are unavailable, as256

yet. However, later (in Section 3), we prove that feature matching results in a fast257

m-width decay of the calibrated manifold defined in (1.7). At least empirically, a fast258

m-width decay results in a fast singular value decay of the snapshot matrix. Our259

expectation is corroborated by the numerous numerical experiments (performed in260

Section 5) where we empirically establish a fast singular value decay in the calibrated261

snapshot matrix.262

2.3 Adaptive reference snapshot selection Recall the conditions (C1)-263

(C3) given in (2.5). A snapshot uM (·, tk) cannot be matched to uM (·, tref) if either264

of these three conditions are violated. To handle such cases, we partition {tl}l=1,...,K265

into subsets containing subsequent time-instances. For each of these subsets, we find266

a different tref such that (C1)-(C3) is satisfied locally. The details are as follows.267

We start with introducing the following notation.268

Definition 2.3 (Time partitions). We partition {tl}l=1,...,K into N ∈ N subsets
(where N will be an outcome of the snapshot selection algorithm). We denote the i-th
subset by [t]i. With r(i) ∈ N we denote the number of elements in [t]i, and with tref(i)

we denote the first element of [t]i, where ref(i) is an index in {1, . . . ,K}. Under this
notation, [t]i reads

[t]i := {tref(i), . . . , tref(i) +r(i)−1}.

Algorithm 2.1 presents the reference snapshot selection algorithm. The algorithm269
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8 NEERAJ SARNA, JAN GIESSELMANN, AND PETER BENNER

starts with the initial data as the reference snapshot, compares it to the subsequent270

snapshots and, in case matching is not possible, updates the reference snapshot. In271

addition to checking (C1)-(C3), the algorithm enforces a lower bound on the minimum272

distance between the features. At least empirically, one observes that the error in273

computing a feature location (i.e., |zj(t)−zM,j(t)|) is of the order of the grid-size ∆x.274

Therefore, to have a reliable calibration we need275

K2∆x ≤ min
j
|zM,j+1(t)− zM,j(t)| where K2 ≥ 2.(2.9)276

277

The output of the algorithm are the time-indices {ref(i)}i=1,...,N of the reference278

snapshots. With these time indices, we construct [t]i as [t]i = {tref(i), . . . , tref(i+1)−1}.279

Furthermore, with the help of [t]i, we split the snapshot matrix as280

S = (S1, . . . ,SN ) ,(2.10)281282

where each of the sub-matrices Si ∈ RM×r(i) contain the snapshots for all t ∈ [t]i and283

can be calibrated using feature matching.284

Remark 1. We further elaborate on the importance of ensuring the lower-bound285

in (2.9). For proper calibration, the ordering of features observed in the numerical286

solution should be the same as that for the exact solution. At least empirically, we287

observe that the feature detection algorithm provides feature locations that are correct288

up to errors of size ∆x. Therefore, in our numerical experiments we do not match289

snapshots containing features that are closer than 2∆x to any other snapshots i.e., we290

satisfy the lower-bound in (2.9).291

2.4 Approximation space We discuss how to use the above splitting of the292

snapshot matrix to construct an approximation space for the calibrated snapshot293

Ucalib,M(t) defined in (1.4). We first consider the time interval Di, which is a contin-294

uous analogue of [t]i, and is given as295

Di := [tref(i), tref(i)+r(i)−1].(2.11)296297

Let Scalib,i represent a calibration of Si. In the online phase, for t ∈ Di, we ap-298

proximate Ucalib,M(t) in the span of the first mi left singular-vectors of Scalib,i i.e., in299

range(Umi(Scalib,i)).300

We now consider the time interval di, which is the gap between Di and Di+1, and301

reads302

di := (tref(i+1)−1, tref(i+1)).(2.12)303304

Since the snapshots uM (·, tref(i+1)−1) and uM (·, tref(i+1)) do not match, we need in-305

formation from both Scalib,i and Scalib,i+1 for an accurate approximation of Ucalib,M(t).306

Therefore, we consider the approximation space range(Umi(Scalib,i))+range(Umi+1(Scalib,i+1)).307

We summarize our above discussion.308

1. For t ∈ Di, approximate Ucalib,M(t) in range(Umi(Scalib,i)).309

2. For t ∈ di, approximate Ucalib,M(t) in the sum of range(Umi(Scalib,i)) and310

range(Umi+1
(Scalib,i+1)).311

2.5 Relation to the previous works To the best of our knowledge, only312

the works in [22, 31] propose a snapshot calibration technique for problems involving313

feature interaction and formation. We compare our method to both of these works.314

The authors in [31] propose a so-called transformed snapshot interpolation (TSI) to315

This manuscript is for review purposes only.



SNAPSHOT CABLIRATION VIA MONOTONIC FEATURE MATCHING 9

Algorithm 2.1 Reference snapshot selection algorithm

Input: S, K1, K2

Output: {ref(i)}i=1,...,N

1: Initialize with N ← 1, ref(N)← 1 and k ← 1
2: ∆minz(tref(N))← minj |zM,j+1(tref(N))− zM,j(tref(N))|
3: ∆minz(tk)← minj |zM,j+1(tk)− zM,j(tk)|
4: Check whether the following conditions are satisfied: (C1)-(C3), ∆minz(tref(N)) >
K2∆x and ∆minz(tk) > K2∆x.

5: If the above statement returns true, increment k by on. Else, increment N by
one, change ref(N) to k and increase k by one.

6: Till k ≤ K, repeat from line-2.

handle shock collision problems and it differs from the current work in the following316

ways. Firstly, authors use an implicit method (the method requiring a solution to317

an optimization problem, see the introduction) to find the transform ϕM . Secondly,318

authors partition the time-domain using a hp-finite element strategy, which does not319

rely on a reference snapshot selection. Thirdly, it is unclear whether the transform320

ϕM satisfies the properties (P1) and (P2) both of which, at least according to our321

analysis, are crucial.322

Our method differs from the shifted-POD approach (proposed in [22]) in the323

following sense. Firstly, shifted-POD is an iterative algorithm where each iteration324

calibrates a particular transport mode by shifting the spatial domain. Our spatial325

transform ϕM takes care of all the transport modes in one step, avoiding the need for326

iterations. Secondly, the shift value computation in shifted-POD requires a significant327

user-interference and results from either a careful observation of the snapshot matrix328

S or of its singular values. In comparison, after the snapshot matrix is computed,329

our method to compute ϕM is automatic. Thirdly, the shifted-POD does not cater to330

time-dependent boundary conditions. Note that none of the above two works study331

the m-width decay of the calibrated manifold.332

3 Kolmogorov m-width decay In this section, we study the m-width of333

the calibrated manifold Mcalib,M (Di) defined in (1.7). Here, Di is the continuous334

analogue of [t]i defined in (2.11). This section has two main highlights (i) the bound335

on the m-width does not only depend on the ROM dimension m but also on the FOM336

dimension M , and (ii) for sufficiently regular initial data u0 and flux function f , the337

m-width decays fast with respect to m. Precisely, when the FOM is a FV solution,338

we show that339

δm(Mcalib,M (Di)) = O(m−ω) +O(M−
1
2 ),(3.1)340341

where the coefficient ω is related to the regularity of u0 and f(u0) between the features.342

Furthermore, for any manifoldM := {h(·, t) : t ∈ D} ⊂ L2(Ω) its m-width, denoted343

by δm(M), is defined as344

δm(M) := inf
Vm⊂L2(Ω)

dim(Vm)=m

‖h−ΠVmh‖L2(Ω×D).(3.2)345

346

The M -dependency of the m-width appearing in (3.1) is introduced via the transform347

ϕM , which we compute using the FOM. Note that for elliptic and parabolic problems,348

calibration is not needed resulting in only an m-dependent m-width [1].349

This manuscript is for review purposes only.



10 NEERAJ SARNA, JAN GIESSELMANN, AND PETER BENNER

We now discuss the details of the result mentioned above. We restrict ourselves350

to a scalar conservation law i.e., Q = 1 in (2.1). Furthermore, we make the standard351

assumption that the flux function f is at least C2 and is strictly convex. Note that for352

t ∈ di, where di is the gap between Di and Di+1 and is as given in (2.12), calibration353

using feature matching is not possible and therefore, Mcalib,M (di) is irrelevant. Fur-354

thermore, since we use snapshots from both Di and Di+1 to approximate the solution355

inside di, we expect this approximation to be accurate.356

We start with defining a few quantities and making some assumptions. In the357

earlier sections, we considered a discrete space-time domain. For a large enough M ,358

we expect the feature locations zi(t) to behave similar to the approximate feature359

locations zM,i(t). This motivates the assumption that since for all t, t∗ ∈ [t]1, we have360

uM (·, t)↔ uM (·, t∗), we also have361

Assumption 1. u(·, t)↔ u(·, t∗), ∀t, t∗ ∈ Di for all i = 1, . . . , N .362

Our results are the same for all the different Di. Therefore, we present our results363

on some representative Di that we denote by D for brevity. The above assumption364

allows us to define the following.365

Definition 3.1 (Calibrated manifold). Similar to Mcalib,M (D), define366

Mcalib(D) := {u(ϕ(·, t), t) : t ∈ D}.(3.3)367368

Above, ϕ is the same as ϕM defined in (2.7) but with zM,j(t) replaced by the exact369

feature location zj(t). We can interpret the functions in Mcalib(D) as a continuous-370

in-space analogue of those in Mcalib,M (D).371

In the next definition, we partition the space-time domain using the time-trajectory372

of different feature locations.373

Definition 3.2 (Space-time partitioning). Let the number of features in uM (·, tref)374

be p0 i.e., p(tref = 0) = p0. For i ∈ {0, . . . , p0}, define375

Ωi := (zi(0), zi+1(0)), ΩDi := {(x, t) : x ∈ (zi(t), zi+1(t)), t ∈ D}.(3.4)376377

Note that clos (Ω) =
⋃p0
i=0 clos (Ωi).378

The main result of this section and its corollary are summarised below. The rest of379

the section proves this result.380

Theorem 3.3. The m-width of the calibrated manifold δm(Mcalib,M (D)) is bounded381

by382

(3.5)

δm(Mcalib,M (D)) ≤δm(Mcalib(D))

+ sup
t∈D
‖DxϕM (·, t)−1‖L∞(Ω)‖uM − u‖L2(Ω×D)

+ ‖uM ◦ ϕM −ΠXMuM ◦ ϕM‖L2(Ω×D)

+
√
‖u‖L∞(D;BV (Ω))‖u‖L2(D;BV (Ω))

×
√

max
j
‖zM,j − zj‖L∞(D) ×max(1, ‖DxϕM‖L∞(Ω×D)).

383

Corollary 3.4. Provided the following conditions hold384

1. The feature identification procedure used for computing ϕM satisfies385

max
j
‖zM,j − zj‖L∞(D)= O(M−1).386

387
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2. There exists ω ≥ 1 so that for all i ∈ {0, . . . , p0} the flux function and the388

initial data satisfy389

(3.6) f ∈ Cω+1, u0|Ωi ∈Wω,∞(Ωi).390

Here, u0 refers to the initial data at the beginning of the corresponding time391

interval Dj. Furthermore, Wω,∞ represents the Sobolev-space of functions392

having ω weak derivatives in L∞.393

3. For all i ∈ {0, . . . , p0},394

sup
(x,t)∈ΩDi

1

|βi(x, t)|
<∞ where βi(x, t) := 1 + tf

′′
(u0(x))Dxu0(x).(3.7)395

396

Then, for a convergent FV approximation scheme, using M equidistant cells, the m-397

width satisfies398

δm(Mcalib,M (D)) = O(m−ω) +O(M−
1
2 ).(3.8)399400

Remark 2. Note that the boundedness of βi is equivalent to no shock forming on401

clos
(
ΩDi
)
.402

We make the following observations and conclusions from the above result.403

1. The bound on the m-width given in (3.5) is robust under the limit m → ∞404

and M →∞.405

2. All the terms on the right in (3.5), apart from δm(Mcalib(D)), areM -dependent406

i.e., they depend on the accuracy of the full-order model.407

3. For M large enough and m small enough, we expect the bound to be domi-408

nated by δm(Mcalib(D)).409

4. For a constant M , as m → ∞, the bound will stagnate at a O(M−
1
2 ) term.410

This means that as m → ∞, the best approximation error of u in the ROM411

space is of the same order of magnitude as ‖u(·, t) − uM (·, t)‖L2(Ω), where412

uM (·, t) is the FOM. Recall that the best approximation error of a (discon-413

tinuous) BV-function in a FV approximation space is O(M−
1
2 ).414

The practical take-away from this discussion is that it does not make sense415

to increase m beyond a certain limit i.e., it does not make sense to further416

increase m when ‖uM (·, t)−ured
m (·, t)‖L2(Ω) and ‖u(·, t)−uM (·, t)‖L2(Ω) are of417

the same order of magnitude. Here, ured
m represent a reduced-order approxi-418

mation to u.419

5. Note that for u ∈ W 1,∞(Ω×D), which allows only for kinks and no discon-420

tinuities, the best approximation error of u in the FV approximation space421

is O(M−1). Similarly, the last term on the right hand side of (3.5) can be422

improved to ‖u‖L2(D;W 1,∞(Ω))M
−1.423

6. The bound on them-width in (3.5) explains that an upper-bound on ‖DxϕM (·, t)−1‖L∞(Ω)424

and ‖DxϕM (·, t)‖L∞(Ω) (i.e. (P2) given in (1.5)) are desirable.425

7. The bound in Theorem 3.3 and Algorithm 2.1 suggests a compromise between426

small and large values of K1—recall that K1 is the user-defined constant427

appearing in the property (P2) given in (1.5). As K1 increases, Algorithm 2.1428

generates smaller number of reference snapshots, resulting in a calibrated429

snapshot matrix with a fewer number of sub-matrices. We expect that, for a430

given approximation accuracy, this would result in a fewer number of POD431

modes used to approximate the calibrated snapshot. In contrast, K1 scales432
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the O(M−1/2) part of the bound in Theorem 3.3, making it undesirable to433

choose a large K1. Numerical experiments indicate that any choice of K1 that434

is O(1) is acceptable.435

3.1 Proof of Theorem 3.1 Triangle’s inequality applied to the definition of436

δm(Mcalib,M (D)) provides437

(3.9)

δm(Mcalib,M (D)) ≤δm(Mcalib(D))

+ sup
t∈D
‖DxϕM (·, t)−1‖L∞(Ω)‖uM − u‖L2(Ω×D)

+ ‖uM ◦ ϕM −ΠXMuM ◦ ϕM‖L2(Ω×D)

+ ‖u ◦ ϕM − u ◦ ϕ‖L2(Ω×D)

=: A1 +A2 +A3 +A4.

438

A bound for the different Ai’s is as follows.439

3.1.1 Bound for A2 and A3 A bound for A2 and A3 follows from the ap-440

proximation properties of a FV approximation space. The decay (in M) of A2 is441

connected to the convergence of the underlying FOM, if u is in BV \W 1,∞ then A2442

will behave as O(M−1/2). Here, BV (Ω) is a space of real-valued functions with a443

finite total variation. Due to the approximation properties of the FV approximation444

space we have445

A3 ≤ |Ω|M−1/2|uM ◦ ϕM |L2(D,BV (Ω))= |Ω|M−1/2|uM |L2(D,BV (Ω)).446

Note that we have used the monotonicity of ϕM in the equality above and that447

|uM |L2(D,BV (Ω))≤ |u|L2(D,BV (Ω)) provided the FV scheme is total-variation-diminishing448

(TVD).449

3.1.2 Bound for A1 Let g(x, t) = u(ϕ(x, t), t), where ϕ is as given in (3.3).450

Tracing the characteristics backwards from t to 0, we have451

g(x, t) = u0((Id +tf ′(u0))−1ϕ(x, t)︸ ︷︷ ︸
=:Xi(ϕ(x,t),t)

) ∀(x, t) ∈ Ωi ×D,(3.10)452

453

where u0 is the initial data in (2.1), f is the flux-function in (2.1), and Ωi is as454

defined in (3.4). Note that because the flux function is convex, while tracing the455

characteristics backwards in an entropy solution, they do not run into a shock. Using456

(3.10), the following result quantifies the regularity of g.457

Lemma 3.5. Provided (3.6) and (3.7) hold, then g ∈ L2(Ω;Hω(D)). Here, L2(Ω;Hω(D))458

denotes a Bochner space of L2 functions defined over Ω with values in the Sobolev space459

Hω(D).460

Proof. See Appendix A.461

With the regularity established in the above result, taking the linear space Vm462

(appearing in (3.2)) to be the span of first m-Fourier modes in D, we can estimate463

the m-width as464

δm(Mcalib(D)) ≤ ‖g −ΠVmg‖L2(Ω×D)= O(m−ω).(3.11)465466

Note that the (un-calibrated) solution u(·, t) rarely has the amount of regularity that467

g(·, t) does. In this sense, we can view calibration as a way of ”artificially” introducing468

regularity to induce a fast m-width decay in the calibrated solution manifold.469
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Apart from the above result, a trivial but noteworthy case is when g is time-470

independent. This results inMcalib(D) consisting of a single function, which provides471

δm(Mcalib(D)) = 0 ∀m ≥ 1.(3.12)472473

Indeed, g is time-independent provided, for all i ∈ {0, . . . , p0}, either of the following474

two conditions hold475

(3.13)
(i) u0|Ωi≡ u0,i for some constant u0,i ∈ R,

(ii) Xi(ϕ(x, t), t) is independent of t.
476

The first condition corresponds to the initial data being a constant inside Ωi, and the477

second one can result inside a rarefaction fan; see Appendix B.478

Remark 3. The result in Lemma 3.5 highlights the advantages of aligning both479

kinks and discontinuities. By including kinks into the set of features we can hope480

that u0 is W 2,∞ between features which makes g ∈ L2(Ω, H2(D)) possible, resulting481

in a m-width that is O(m−2). However, if u0 contains a kink that is not in the482

set of features then we expect u0 is W 1,∞ \W 2,∞ between the features resulting in483

g ∈ L2(Ω, H1(D)) \ L2(Ω, H2(D)) and a m-width that is O(m−1).484

Remark 4. One can match the discontinuities in the higher-order derivatives485

of uM (·, t) and get a faster (than presented above) m-width decay rate—precisely,486

matching discontinuities in the ω-order derivative results in a ω+1-order decay in the487

m-width. However, numerically identifying the location of discontinuities in higher-488

order derivatives is difficult and cumbersome. As our numerical experiments indicate,489

for a sufficiently refined numerical approximation in XM , kink identification is possible490

and for that reason, we do not consider higher-order derivatives.491

3.1.3 Bound for A4 The estimate for ‖u ◦ ϕM − u ◦ ϕ‖L2(Ω×D) follows from492

the result below. The first part of the result is an extension of the result in [32] to493

L2-functions and exploits the density of smooth functions in the BV -space. In the494

second part, we use the explicit from of the spatial transform given in (2.7) to compute495

‖ϕ−ϕM‖L∞(Ω×D). With the bound given in the second part, we again emphasize on496

the desirability of ensuring (P2).497

Lemma 3.6. The following relations hold true.498

1. ‖u◦ϕ−u◦ϕM‖2L2(Ω×D)≤ ‖u‖L∞(D;BV (Ω))‖u‖L2(D;BV (Ω))‖ϕ−ϕM‖L∞(Ω×D).499

2. Let K1 be the constant given in (1.5). Then, the error ‖ϕ− ϕM‖L∞(Ω×D) is500

bounded as501

‖ϕ− ϕM‖L∞(Ω×D)≤ max(1,K1) max
j
‖zM,j − zj‖L∞(D).(3.14)502

503

Proof. See Appendix C.504

4 Feature Detection It is important to note that our calibration approach505

can be combined with any feature detection approach and that the feature location506

algorithm can be used as a black-box. In order to keep this article self-contained, we507

explain one specific approach which was also used in our numerical experiments. This508

specific approach is based on the more general idea that kinks are discontinuities in509

the derivative i.e., discontinuities and kinks can be detected by discontinuity detection510

schemes using the following three steps: (i) approximate the discontinuity locations,511

(ii) approximate the weak derivative Dxu(·, t) and (iii) approximate the kink locations512

by applying the discontinuity detection algorithm to Dxu(·, t). To realize such a513
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method, we need a discontinuity detector for which several different methods can514

suffice. For example, one can detect discontinuities by training a neural network [21],515

using the convergence properties of FOM [12], performing a multi-resolution-analysis516

(MRA) [30], etc.517

For its ease of implementation and reasonable accuracy for the experiments con-518

sidered later, we use the MRA approach and modify it slightly to suit our needs. The519

details of our modification are given below and for completeness, the MRA approach520

is discussed in Appendix D.521

4.1 Discontinuity Detection Recall that our FOM corresponds to a FV ap-522

proximation. With ui(t) we represent the constant value of uM (·, t) inside Ii, where523

Ii is the i-th cell defined in (2.2). The M -cells have M + 1 faces and we collect their524

indices in E := {1, . . . ,M + 1}. With xe we represent the location of the e-th face,525

i.e. the face between Ie and Ie+1. Across every face we compute the jump in uM (·, t)526

and if the jump overshoots a given tolerance, we mark it as a potential location of527

discontinuity. Details are as follows.528

Let e ∈ E . With Je(t) we denote the absolute value of the jump in uM (·, t) across529

the edge e i.e.,530

Je(t) = |ue(t)− ue−1(t)|, ∀e ∈ E .(4.1)531532

Using Je(t), we define the set B(t) that contains the indices of faces with a potential533

discontinuity in the adjoining cell534

B(t) := {e ∈ E : Je(t) > C ×∆x}.(4.2)535536

Above, C is user-defined and controls the number of faces that will be contained in537

B(t). Later, we elaborate more on the relevance of C.538

To compute the discontinuity location using B(t), we proceed as follows. We539

partition B(t) into sub-sets {Bi(t)}i such that each of Bi(t) contains indices of only540

the adjoining faces. For instance, if B(t) = {1, 2, 4, 5} then B1(t) = {1, 2} and B2(t) =541

{4, 5}. A set Bi(t) can have more than one element when, due to the numerical542

dissipation in the FV scheme, the discontinuity is spread out into a set of neighbouring543

cells, or when there are multiple discontinuities in succession. For both the cases, we544

compute the discontinuity location by taking the mean of all the face locations in545

Bi(t). Equivalently,546

zDM,i(t) :=

∑
e∈Bi(t) xe

|Bi(t)|
∀i ∈ {1, . . . , pD(t)}.(4.3)547

548

Here zDM,i(t) denotes an approximation to the the true discontinuity location zDi , and549

pD(t) denotes the total number of discontinuities.550

Remark 5. Ideally, B(t) should include only those faces that have discontinuities551

in the adjoining cells. However, depending upon C’s value and the solution’s behaviour552

away from a discontinuity, the ideal situation might not be realized. Additional faces553

that do not contain discontinuities in the adjoining cells might be included in B(t).554

The inequalities given in Appendix E give some indication of how the method flags555

different regions. We emphasize that identifying additional feature location does not556

ruin the calibration procedure. It only results in additional points being matched be-557

tween two snapshots. However, with any additional feature it is more likely to violate558

the conditions (C1)-(C3), resulting in Algorithm 2.1 generating additional reference559

snapshots.560
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4.2 Kink detection Let Ω̂(t) := {zDi (t)}i=1,...,pD(t) be a set of points where561

u(·, t) is discontinuous. In Definition 2.1, we defined kink locations as points where562

Dxu(t) has a discontinuity in Ω/Ω̂(t). Thus, to find these locations, we run the563

discontinuity detection algorithm on Dxu(·, t). To realize the algorithm we need an564

approximation for Dxu(·, t) and Ω̂(t).565

Let DxuM (·, t) be an approximation to Dxu(·, t). We find DxuM (·, t) by applying566

central differences to uM (·, t). Let Dxui(t) be the constant value of DxuM (·, t) in the567

cell Ii. Then, Dxui(t) is given as568

Dxui(t) =
ui+1(t)− ui−1(t)

2∆x
.(4.4)569

570

On the continuous level, the derivative of u(·, t) is a Dirac-distribution at points where571

u(·, t) is discontinuous. However, on a spatially discrete level, the delta distribution572

is a collection of ”spikes” in DxuM (·, t). To collect these spike we approximate every573

entry zDi (t) by a ball of radius ε centered around zDi (t). As an approximation to zDi574

we use xe, where xe is the location of the e-th face, e ∈ B(t), and B(t) is as given in575

(4.2). We set ε to ND ×∆x and we approximate Ω̂(t) by576

Ω̂(t) ≈
⋃

e∈B(t)

B(xe;N
D∆x).(4.5)577

578

We choose ND = 3. We use an example to motivate our choice for ND. Let u(·, t) be579

a unit-step function with a discontinuity at zD = xe+ l∆x, where l ∈ [0, 1]. It follows580

that581

Dxue−1(t) =
(1− l)
2∆x

, Dxue(t) =
1

2∆x
, Dxue+1(t) =

l

2∆x
.582

583

For all the other intervals, DxuM (·, t) = 0. Depending on the value of l, DxuM (·, t)584

can have a large spike in the intervals Ie−1, Ie and Ie+1. Therefore, ND = 3 is a585

reasonable choice.586

Remark 6. With the above method, we do not detect kinks inside the union of587

balls given in (4.5). However, for a small enough ∆x, missing out on these kinks588

does not significantly increase the m-width of the calibrated manifold. This will be589

elucidated by numerical experiments.590

4.3 Undetected features Features can get smeared out by numerical dissi-
pation and, depending upon the value of C given in (4.2), might go undetected. For
such cases, one can show that (at least) the semi-discrete numerical solution already
has sufficient regularity to ensure a fast m-width decay. Let ui(t) be as defined in
Subsection 4.1 and let

dui(t)

dt
=

1

∆x
(F(ui−1(t), ui(t))−F(ui(t), ui+1(t)))

be its evolution equation. Here, F represents a numerical flux function, which we591

assume is in W 2,∞.592

We first consider undetected discontinuities. Assume that |ui±1(t)−ui(t)|≤ C∆x,593

in which case we do not detect a discontinuity at the face i − 1 and i. Then, using594

the regularity of F , one can show that595

|dui(t)/dt|≤ 2‖F‖2W 1,∞C.596597
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In Lemma 3.5 we proved that ϕ(x, ·) ∈Wω(D). Motivated from this, we assume that598

ϕM (x, ·) ∈ Wω(D), which is equivalent to zM,j ∈ Wω(D). Then, the above bound599

implies that, for x ∈ Ii, uM (ϕM (x, ·), ·) ∈Wω(D). Thus, locally in Ii, uM (ϕM (x, ·), ·)600

has the regularity needed for a fast m-width decay of the calibrated manifold.601

We now consider undetected kinks. Assume that |Dxui(t) −Dxui−1(t)|≤ C∆x,
|Dxui+1(t)−Dxui(t)|≤ C∆x and |Dxui+2(t)− ui+1(t)|≤ C∆x, in which case we do
not detect a kink at the face i− 1, i and i+ 1. Then, one can show that

|d2ui/dt
2|≤ 4‖F‖2W 2,∞(2C2 + C).

Following the same reasoning as above, the bound implies that, for x ∈ Ii, uM (ϕM (x, ·), ·) ∈602

Wω(D).603

5 Numerical Experiments Let Ξm(S) be as defined in (1.3). The numer-604

ical experiments show the following two things. Firstly, with kink and discontinu-605

ity matching, Ξm(Scalib) decays much faster than Ξm(S). Secondly, both kink and606

discontinuity matching is better than only discontinuity matching. To construct nu-607

merical approximations where both kink and discontinuity detection is possible, we608

consider the best-approximation in XM . Note that in light of the discussion in Sub-609

section 4.3, these numerical approximations are the ones were we expect the slowest610

m-width/singular-value decay.611

Since Ξm(Scalib) quantifies the l2 error of approximating a calibrated snapshot in612

the span of the first m left singular vectors of Scalib, similar to the bound in (3.5),613

it is possible that on increasing m, Ξm(Scalib) stagnates at a value of O(M−
1
2 ). The614

following experiments will provide further elaboration.615

1. Test case-1 we consider the Burgers’ equation616

∂tu+ ∂x

(
u2

2

)
= 0, on Ω×D, u(·, t = 0) = 1[0,1], on Ω.(5.1)617

618

Above, 1[0,1] represents a characteristic function over [0, 1]. We choose Ω =619

(−0.5, 3.5) and D = [0, 4]. On the boundary ∂Ω×D, we prescribe u = 0.620

2. Test case-2 we consider the wave equation (rewritten as a first order system)621

∂tu+A∂xu = 0, on Ω×D,(5.2)622623

where u = (u1, u2)T is the solution vector and the matrix A reads624

A =

(
0 1
1 0

)
.(5.3)625

626

We choose Ω = (−0.5, 3.5) and D = [0, 2]. As the initial data, for all x ∈ Ω,627

we consider628

u1(x, t = 0) = w1(x) + w2(x), u2(x, t = 0) = −w1(x) + w2(x),(5.4)629630

where w1(x) and w2(x) are two sin-function bumps given as631

(5.5)

w1(x) =
1√
2

(sin(πx) + 1)1[0,1](x),

w2(x) =
1√
2

(sin(π(x− 2)) + 1)1[2,3](x).

632

As in the previous case, on ∂Ω×D, we prescribe u = 0.633
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3. Test case-3 we consider the Sod’s shock tube problem that involves the634

Euler’s equation given as635

∂t

 ρ
ρv
E

+ ∂x

 ρv
ρv2 + P
Ev + Pv

 = 0, on Ω×D.(5.6)636

637

Above, ρ, v, P and E represent the density, the velocity, the pressure and the638

total energy, respectively. For an ideal gas, P = (γ − 1)ρe, where γ represent639

the gas constant and e is the internal energy related to the total energy via640

ρe = E − ρv2/2. We consider a mono-atomic ideal gas for which γ = 5/3.641

We choose Ω = (−0.5, 0.5) and D = [0, 0.2]. As the initial data, we consider642

a fluid at rest with the density and the pressure given as643

ρ(x, t = 0) =

{
1, x ≤ 0

0.125, x > 0
, P (x, t = 0) =

{
1, x ≤ 0

0.1, x > 0
.(5.7)644

645

The waves emanating from the initial discontinuity do not reach the boundary646

therefore, we take the boundary data from the initial values.647

4. Test case-4 we consider the linear advection equation with time-dependent648

boundary data649

(5.8)

∂tu(x, t) + β∂xu(x, t) = 0, ∀(x, t) ∈ Ω×D,
u(x, t = 0) = (sin(πx) + 1)1[0,1](x) ∀x ∈ Ω,

u(x = 0, t) = 1[0.1,0.5](t), ∀t ∈ D.
650

We set β = 1, Ω = (−0.5, 3.5) and D = [0, 1].651

For all the test cases, we partition Ω into M = 2 × 103 elements, and consider 103652

uniformly placed time instances inside D. We choose K1 = 5, K2 = 3 and C = 50.653

For all the test cases, we project the exact solution onto the FV space. Details of654

the exact solution are given later. We compute all the L2(Ω) inner-products with 10655

Gauss-Legendre quadrature points in each cell.656

5.1 Test case-1 The unique entropy solution to the problem in (5.1) reads657

(5.9)

u(x, t) :=


x
t , x ∈ [0, t)

1, x ∈ [t, 1 + t
2 )

0, else

, ∀t ∈ [0, 2),

u(x, t) :=

{
x
t , x ∈ [0,

√
2t)

0, else
, ∀t ∈ [2, 4].

658

The exact solution has two discontinuities at t = 0. One of the discontinuities gives659

rise to two kinks (a rarefaction fan), the other remains as a discontinuity. At t = 2, one660

of the kinks collides with a discontinuity to form a single discontinuity. Around t = 0,661

the two kinks are very close to each other and are identified as a single discontinuity662

in the numerical solution; see Figure 2a. As time progresses, the two kinks move away663

from each other and are identified correctly.664

Let E(∆x) represent the maximum of the error in feature location for a grid size665

∆x i.e.,666

E(∆x) := max
j
‖zM,j − zj‖L∞(D).(5.10)667

668
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Recall that ∆x = |xmax − xmin|/M . Figure 2b shows E(∆x) for different grid sizes.669

We vary the number of spatial elements M from 5×102 to 3×103 in steps of 2×102.670

We choose the threshold C in the discontinuity location identification such that C/M671

remains constant at 2.5 · 10−2. We make the following two observations. Firstly,672

although not monotonically, E(∆x) decreases with ∆x. Secondly, E(∆x) stays close673

to ∆x and can get smaller than ∆x as ∆x decreases. Thus, at least for the current674

feature location identification procedure and for the current test case, the assumption675

on the error in feature location made in Corollary 3.4 is justified.676

The dashed lines in Figure 2a show the temporal locations of the reference snap-677

shots resulting from Algorithm 2.1. The algorithm provides N = 5 (with N as given678

in Definition 2.3) different reference snapshots located at t = 0, t = 0.02, t = 1.60,679

t = 1.92 and t = 1.98, respectively. The first reference snapshot is the initial data680

that is matched to a few subsequent snapshots, which is a result of identifying the two681

close-by kinks as a single discontinuity. The second reference snapshot is at a time682

instance when our feature identifier can distinguish between the two kinks. The third683

and the fourth reference snapshot is selected because the features come too close to684

each other, violating either the condition (C3) given in (2.5) or the lower-bound on the685

minimum feature distance given in (2.9). The last reference snapshot is selected after686

the kink collides with the discontinuity, it matches to all the subsequent snapshots.687

Note that in the exact solution, the kink collides with the discontinuity at t = 2.688

However, numerically, as mentioned in Remark 6, we miss out on kinks that lie very689

close to a discontinuity therefore, already at t = 1.98 we detect only the discontinuity690

and not the kink that interacts with it.691

Figure 2c compares Ξm(Si) to Ξm(Scalib,i) and shows that, for all values of i and692

m, Ξm(Scalib,i) is smaller than Ξm(Si). Since S1 contains only four snapshots, the693

value of Ξm(Scalib,1) does not significantly differ from Ξm(S1). For all the other sub-694

matrices, the value of Ξm(Scalib,i), already for m = 1, is at least 10−4 times smaller695

than Ξm(Si). Let us emphasize that m = 1 is just 0.05% of M (the dimensionality of696

the FOM).697

For i = 4, 5, as m is increased, Ξm(Scalib,i) stagnates. Varying the value of M698

from 103 to 3× 103 in steps of 2× 102 showed that the stagnation value is O(M−0.8),699

which is O(M−0.3) times better than (the M -dependent part of) the bound on the700

m-width developed in (3.8). A possible reason for this stagnation could be the error701

in feature location.702

For i = 2, the matrix Si contains snapshots that are either rarefaction fans or703

constants between any two features, thus satisfying the condition in (3.13). This704

results in the calibrated manifold consisting of a single function. Ideally, the calibrated705

snapshot matrix should have a rank close to one and for m = 1, Ξm(Scalib,i) should706

be (very) close to zero. However, as Figure 2c depicts, because of the error in feature707

location, this ideal situation is not realized in practice and the value Ξm(Scalib,i) is far708

away from zero. Nevertheless, for m = 13, Ξm(Scalib,i) reaches (machine precision)709

zero. We attribute this convergence to the fact that the error in identifying a feature710

location is O(M−1) and that the calibrated manifold Mcalib(Di) consists of a single711

function. Observance of a similar behaviour in other experiments corroborates our712

claim.713

5.1.1 Discontinuity matching We repeat the above experiment but with714

only discontinuity matching. With SDcalib we represent the resulting calibrated snap-715

shot matrix. Algorithm 2.1 generates two reference snapshots i.e., N = 2. The716

temporal location of these two reference snapshots are shown in Figure 3a. Both the717
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reference snapshots are close to t = 0. The first reference is the initial data and718

is matched to a few subsequent snapshots. The second reference snapshot is at a719

time-instance when we can uniquely identify the two kinks, leaving us with a single720

discontinuity.721

Figure 3b compares Ξm(Scalib,i) to Ξm(SDcalib,i). For i = 1, both Ξm(Scalib,i) and722

Ξm(SDcalib,i) have the same values. This is as expected, since the two close-by kinks are723

identified as a discontinuity. For i > 1 and for all m ∈ [1, 20], Ξm(Scalib,i) is at least724

two orders of magnitude smaller than Ξm(SDcalib,i). The difference is more prominent725

for smaller values of m. Already for m = 1, Ξm(Scalib,i) is four order of magnitude726

smaller than Ξm(SDcalib,i). The experiment clearly establishes the benefit of including727

both kinks and discontinuities in the feature set.728

(a) (b)

(c)

Fig. 2: Results for test case-1. Both kinks and discontinuities included in the feature
set. (a) Time-trajectory of the different features. Kink and discontinuity locations
shown in red and blue, respectively. The dashed black lines show the temporal loca-
tions of the reference snapshots. (b) Error in feature location for different ∆x. (c)
Comparison of Ξm(Si) to Ξm(Scalib,i). The y-axis of (c) is on a log-scale.

5.2 Test case-2 With the help of the Riemann invariants, for all (x, t) ∈ Ω×D,729

one can conclude that the exact solution to the wave equation (5.2) is given as730

u1(x, t) = w1(x− t) + w2(x+ t), u2(x, t) = −w1(x− t) + w2(x+ t).(5.11)731732
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(a) (b)

Fig. 3: Results for test case-1. Only discontinuities included in the feature set. (a)
Time-trajectory of the different features. Kink and discontinuity locations shown in
red and blue, respectively. The dashed black lines show the temporal locations of the
reference snapshots. (c) Comparison of Ξm(Scalib,i) to Ξm(SDcalib,i). The y-axis of (b)
is on a log-scale.

The functions w1 and w2 are as given in (5.5). Both u1 and u2 contain two disconti-733

nuities, which interact at four different time instances. For u1, the time-trajectory of734

the different discontinuities is shown in Figure 4a. The algorithm accurately identifies735

the four discontinuities.736

We discuss the results for u1, similar results were observed for u2. Algorithm 2.1737

generates N = 18 different reference snapshots. The temporal locations of these738

snapshots are shown in Figure 4a. Similar to the previous test case, the reference739

snapshot changes frequently when features come close, or interact, with each other. To740

study Ξm, for the simplicity of exposition, out of the 18 different subsets {[t]i}i=1,...,18,741

we select the first four with the largest number of snapshots. These four subsets lie742

inside (0, 0.5), (0.5, 1), (1, 1.5) and (1.5, 2), respectively, which are also the time-743

intervals with no feature interaction.744

For these four subsets, Figure 4b and Figure 4c compare Ξm(Si) to Ξm(Scalib,i).745

Already for m = 1, the value of Ξm(Scalib,1/18) is ≈ 10−5 and is machine-precision746

zero for m = 3. For the same value of m, the value of Ξm(S1/18) is ≈ 1. The value747

of Ξm(Scalib,7/12) behaves differently. For m = 4 and larger, it does not appear to748

converge to zero and stagnates at ≈ 10−4. For the same value of m = 4, the value of749

Ξm(S7/12) is ≈ 10−1. This is 103 times larger than the value of Ξm(Scalib,7/12).750

Note that S1/18 contains snapshots that have two sin-bumps that do not interact751

with each other and have a constant speed of one. One can conclude that this results752

in the calibrated manifold Mcalib(D1/18) consisting of a single function. Figure 5a753

shows the snapshots in Scalib,1. The snapshots change (very) little over time, with no754

change being visible. In contrast, as depicted by Figure 5b, the snapshots in Scalib,7755

change substantially over time. This could explain the superior calibration of S1/18756

as compared to S7/12.757

5.3 Test case-3 An exact solution to the Sod’s shock tube problem can be758

found in [10]. For brevity, we do not repeat the exact solution here. We present the759

results for velocity (v) and density (ρ). The results for pressure (P ) are similar to760
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(a) (b)

(c)

Fig. 4: Results for test case-2. (a) Time-trajectory of the approximate feature lo-
cations. Kink and discontinuity locations shown in red and blue, respectively. The
dashed black lines show the temporal locations of the reference snapshots. (b) Com-
pares Ξm(S1/18) to Ξm(Scalib,1/18). (c) Compares Ξm(S7/12) to Ξm(Scalib,7/12). The
y-axis of (b) and (c) is on a log-scale.

that for density (ρ) and are not discussed for brevity.761

5.3.1 Results for density (ρ) The initial data has a single discontinuity that762

splits into a rarefaction fan with two kinks and two discontinuities; see Figure 6a.763

The approximate feature trajectories are shown in Figure 6b. Around t = 0, the764

kinks are too close to each other and are identified as a single discontinuity. For765

t ∈ (0.01, 0.1), because of a large slope inside the rarefaction fan, the algorithm is766

unable to distinguish between the two kinks and identifies the midpoint of the two767

kinks as the kink location. Only after t = 0.1, the spread of the rarefaction fan allows768

for an accurate identification of the two kinks.769

Algorithm 2.1 generates N = 11 different reference snapshots, the location of770

which are shown in Figure 6b. Because the features are too close to each other, the771

reference snapshot changes frequently close to t = 0. Around t = 0.1, the two kinks772

are identified correctly and the algorithm generates an additional reference snapshot.773

To study Ξm, out of {[t]i}i=1,...,N , we select the two largest subsets. These two774

subsets lie inside (0.02, 0.1) and (0.1, 0.2), respectively. Figure 6c compares Ξm(S8/9)775
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(a) (b)

Fig. 5: Results for test case-2. (a) and (b) show the snapshots in Scalib,1 and Scalib,7,
respectively.

to Ξm(Scalib,8/9). For both i = 8 and i = 9, Ξm(Scalib,i) decays much faster than776

Ξm(Si). For m = 10, which is 0.5% of M , calibration provides at least one order-of-777

magnitude improvement, with the results for i = 9 being better than those for i = 8.778

Precisely,779

Ξ10(Scalib,8) ≈ 5× 10−2 × Ξ10(S8), Ξ10(Scalib,9) ≈ 1× 10−2 × Ξ10(S9).(5.12)780781

As m increases, the difference between Ξm(Scalib,i) and Ξm(Si) becomes larger. For782

m = 50, which is 2.5% of M , we find an improvement of at least two orders of783

magnitude784

Ξ50(Scalib,8) ≈ 10−2 × Ξ50(S8), Ξ50(Scalib,9) ≈ 7× 10−3 × Ξ50(S9).(5.13)785786

5.3.2 Results for velocity (v) Apart from t = 0, v(·, t) has two kinks and787

a discontinuity. Similar to test case-1, the two kinks are identified once they have788

moved sufficiently far away from each other, otherwise they are identified as a single789

discontinuity. The discontinuity is identified accurately at all time instances; see790

Figure 7a.791

Algorithm 2.1 generates N = 5 different reference snapshots. Most of these792

reference snapshots are close to t = 0. The time interval (0.01, 0.2) is the largest793

subset of D where the reference snapshot does not change. For this time-interval,794

in Figure 7b we compare Ξm(Si) to Ξm(Scalib,i). Already for m = 1, we find that795

Ξm(Scalib,5) ≈ 10−3, which is two orders of magnitude smaller than Ξm(S5). For796

m = 30, which is 1.5% of M , Ξ30(Scalib,5) is (machine precision) zero, whereas Ξ30(S5)797

is 6.4× 10−2.798

5.4 Test case-4 An exact solution to (5.8) is given as799

(5.14)
u(x, t) =1[0.1,0.5]

(
t− x− xmin

β

)
, ∀x ∈ (0, xmin + βt], t ∈ D,

u(x, t) =(sin(π(x− βt)) + 1)1[0,1](x− βt), ∀x ∈ (xmin + βt, xmax), t ∈ D.
800

For t ∈ [0, 0.1), the solution contains two discontinuities that move to the right. At801

t = 0.1 and t = 0.5, two additional discontinuities enter from the left boundary.802
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(a) (b)

(c)

Fig. 6: Test case-3: results for ρ. (a) and (b) show the exact and the approximate
feature trajectory, respectively. Kinks are shown in red and the discontinuities in
blue. Dashed lines in (b) show the temporal locations of the reference solutions. (c)
Compares Ξm(S8/9) to Ξm(Scalib,8/9). The y-axis in (c) is on a log-scale.

Figure 8a shows the approximate location of these discontinuities. Algorithm 2.1803

generates N = 11 different reference snapshots. The reference snapshot changes when804

a new discontinuity enters from the boundary.805

Figure 8b compares Ξm(Si) to Ξm(Scalib,i) for the three largest subsets [t]i.806

Clearly, Ξm(Scalib,i) decays much faster than Ξm(Si), and is zero for m = 3. For807

the same value of m, Ξm(Si) is ≈ 2× 10−2. With the above exact solution, it is easy808

to check that the calibrated manifold consists of a single function, which could explain809

the great improvement offered by calibration.810

6 Conclusions We have proposed an algorithm to induce a fast singular value811

decay in a snapshot matrix resulting from hyperbolic equations. The algorithm relies812

on computing the snapshots on a transformed spatial domain with the transformation813

computed using feature matching between a reference and the other snapshots. The814

choice of the reference snapshot ensures that the transformation is a homeomorphism815

and has a lower and an upper bound on its weak derivative—we found these two prop-816

erties desirable for both the theoretical analysis and a numerical implementation. To817

account for feature interaction and formation (i.e., cases where shocks collide, shocks818
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(a) (b)

Fig. 7: Test case-3: results for the velocity v. (a) Approximate feature location. (b)
Compares Ξm(S5) to Ξm(Scalib,5). The y-axis in (b) is on a log-scale.

(a) (b)

Fig. 8: Results for test case-4. (a) Approximate feature location. (b) Compares
Ξm(S1/6/11) to Ξm(Scalib,1/6/11). The y-axis in (b) is on a log-scale.

form, etc.), we have proposed an adaptive reference snapshot selection technique.819

With this technique, we can divide the snapshot matrix into sub-matrices with each820

sub-matrix containing snapshots with no feature interaction/formation. In each of821

the sub-matrices, we perform feature matching as usual.822

Under regularity assumptions on the initial data and the flux function, we have823

proven that feature matching results in a fast m-width decay of a so-called calibrated824

manifold. Our proof exploits the regularity of functions in a calibrated manifold. We825

have performed numerical experiments on a broad range of problems involving non-826

linear system of equations and time-dependent boundary conditions. Our experiments827

verify that feature matching is successful in inducing a fast singular value decay in828

a snapshot matrix. We also found that feature matching performs exceptionally well829

for problems where the calibrated manifold contains a single function.830

We observe that although the singular values of a calibrated snapshot matrix831

decay fast, they can stagnate at a value that scales with the spatial grid resolution.832
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The stagnation is a by-product of computing the spatial transform using a numerical833

approximation of the exact solution and indicates that, for hyperbolic problems, not834

much is gained by increasing the dimension of the reduced-order model beyond a835

certain limit.836
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Appendix A. Regularity of functions in Mcalib(D). The definition of929

Xi provides Xi ∈ C0(ΩDi ) by the implicit function theorem and the bound on βi.930
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Moreover,931

(A.1)

DtXi(x, t) = −f
′(u0(Xi(x, t)))

β(Xi(x, t), t)
=: Ĝ(Xi(t, x), t),

DxXi(x, t) =
1

β(Xi(x, t), t)
=: G̃(Xi(t, x), t).

932

The regularity of f and u0 and the assumption on β imply that Ĝ, G̃ ∈ Cω−1(Ωi×D)933

which implies that Xi ∈Wω,∞(ΩDi ) by bootstrapping.934

Next, we show that ϕ ∈ L∞(Ω;Wω,∞(D)). Since ϕ(x, t) ≤ xmax, we have ϕ ∈935

L∞(Ω × D). The definition of ϕ in (2.7) implies that Dω
t ϕ ∈ L∞(Ω × D) if z ∈936

Wω,∞(D). When z is a kink location, following the characteristics forwards in time937

we find z(t) = z(0) + f ′(u0(z0(0))) · t, which provides the desired regularity. When z938

is a shock location, we proceed as follows.939

For simplicity, assume that p0 = 1 with a shock at z(t). The argument remains940

the same for (non-interacting) multiple shocks. Consider the weak solution941

u(x, t) =

{
ũ0(x, t) in ΩD0
ũ1(x, t) in ΩD1

.(A.2)942

943

Above, ΩD0/1 are as given in (3.4). Following the characteristics forward in time, we944

find945

ũ0(x, t) = u0(X0(x, t)), ũ1(x, t) = u0(X1(x, t)).(A.3)946947

The assumption on βi means that inside ΩDi characteristics of u are bounded away948

from intersecting each other. Thus, ũ0, ũ1 inherit their regularity from the regularity949

of the initial data between the features, i.e. ũi ∈ Wω,∞(ΩDi ) and (since intersection950

of characteristics is not imminent), we can find c, ε > 0 such that ũ0 has a extension951

ũex
0 ∈Wω,∞(ΩD,ex

0 ) (that is constant along characteristics) with952

ΩD,ex
0 := {(x, t) : x ≤ z(t) + min(ε, ct), t ≤ T}.(A.4)953954

A similar definition holds for ũex
1 . By the Rankine-Hugoniot condition, z satisfies955

dtz(t) = H(ũex
0 (z(t), t), ũex

1 (z(t), t)) where H(a, b) :=

{
f(a)−f(b)

a−b , a 6= b

f ′(a), a = b
.(A.5)956

957

Since f ∈ Cω+1 we have H ∈ Cω(R2) implying that z satisfies dtz(t) = h(z(t), t)958

with h = H(ũex
0 , ũ

ex
1 ) and h ∈ Cω−1

((
ΩD,ex

0 ∩ ΩD,ex
1

)
×D

)
. Since ΩD,ex

0 ∩ ΩD,ex
1 is959

compact and ũex
i is Lipschitz, h is globally Lipschitz continuous providing a global960

solution to (A.5). Furthermore, since h ∈ Cω−1, z ∈ Cω(D). Since D is closed, we961

have z ∈Wω,∞(D) and thus ϕ ∈ L∞(Ω,W 1,∞(D)).962

Using (3.10) the regularity of g is a direct consequence of the regularity of u0, Xi,963

and ϕ964

Appendix B. Rarefaction fan. Let Xi(x, t) be as given in (3.10). We show965

that the second condition in (3.13) can be satisfied if Ωi contains a rarefaction fan.966

Let Ω = (−1, 2) and let D = [0, 0.5] and consider the initial data967

u0(x) :=


(f ′)

−1
(0) , x ≤ 0

(f ′)
−1

(x) , x ∈ (0, 1)

(f ′)
−1

(1) , x ∈ [1, 2)

.(B.1)968

969
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With the above initial data, the solution reads970

u(x, t) :=


0, x ≤ 0

(f ′)
−1
(

x
t+1

)
, x ∈ (0, 1 + t)

(f ′)
−1

(1) , x ∈ [1 + t, 2)

.(B.2)971

972

Assume that for all t ∈ D, u(·, t) has a kink at both x = 0 and x = 1 + t. Thus, we973

have two features. The kink locations are given as974

z1(t) = 0, z2(t) = 1 + t.(B.3)975976

Using the above relation, for x ∈ Ω2 = (z1(t), z2(t)), the spatial transform reads977

ϕ(x, t) = x (1 + t) .(B.4)978979

For i = 2 and for all x ∈ Ω2, the definition of Xi in (3.10), the expression for u0, and980

the above expression for ϕ provides981

X2(x, t) + tX2(x, t) = x ⇒ X2(x, t) =
x

1 + t
.(B.5)982

983

Appendix C. Estimate for ‖u ◦ ϕ− u ◦ ϕM‖L2(Ω×D).984

1. The following proof is an extension of the one given in [32] for L2 functions.985

For some ε > 0, define Ωε : {x ∈ Ω : dist(x, ∂Ω) > ε}. Let uε ∈ C∞(Ωε) be986

a mollification of u(·, t) over Ωε. Then, the following holds987

‖uε − u(·, t)‖L2(Ωε)
ε→0−−→ 0, ‖uε(·, t)‖BV (Ωε)≤ ‖u(·, t)‖BV (Ωε).(C.1)988989

Triangle’s inequality provides990

‖u ◦ ϕ− u ◦ ϕM‖L2(Ωε×D)≤‖u ◦ ϕ− uε ◦ ϕ‖L2(Ω×D)

+ ‖u ◦ ϕM − uε ◦ ϕM‖L2(Ωε×D)

+ ‖uε ◦ ϕ− uε ◦ ϕM‖L2(Ωε×D).

991

Applying a domain transformation and using (1.5), we find992

‖u ◦ ϕ− uε ◦ ϕ‖L2(Ω×D). ε, ‖u ◦ ϕM − uε ◦ ϕM‖L2(Ω×D). ε.(C.2)993994

Because of the above two relations, it is sufficient to bound ‖uε ◦ ϕ − uε ◦995

ϕM‖L2(Ωε×D). For s ∈ [0, 1], define Φ(x, t, s) = sϕ(x, t) + (1 − s)ϕM (x, t).996

Using Φ, we write997

‖uε ◦ ϕ− uε ◦ ϕM‖2L2(Ωε×D)=

∫
Ωε×D

(∫ 1

0

∂suε(Φ(x, t, s))ds

)2

dxdt998

≤‖uε‖L∞(D),BV (Ωε))999

×
∫

Ωε×D

(∫ 1

0

∂s|uε(Φ(x, t, s))|ds
)
dxdt1000

≤‖u‖L∞(D;BV (Ω))‖u‖L2(D;BV (Ω))1001

× ‖ϕ− ϕM‖L∞(Ω×D).10021003

Above, the last inequality follows from [32] and (C.1).1004
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2. By definition,1005

ϕ(zi(0), t) = zi(t), ϕM (zM,i(0), t) = zM,i(t).(C.3)10061007

We refer to zi(0) and zM,i(0) as the nodes and to zi(t) and zM,i(t) as the node1008

values of a spatial transform. We introduce an intermediate (continuous and1009

piecewise linear) spatial transform ϕ̂ that has the same nodes as ϕ(·, t) and1010

the same nodal values as ϕM (·, t) i.e., ϕ̂(zi(0), t) = zM,i(t). By triangle’s1011

inequality,1012

‖ϕM − ϕ‖L∞(Ω×D)≤ ‖ϕ− ϕ̂‖L∞(Ω×D)+‖ϕ̂− ϕM‖L∞(Ω×D).(C.4)10131014

Because ϕ and ϕ̂ have the same nodes, we conclude that1015

‖ϕ− ϕ̂‖L∞(Ω×D)= max
j
‖zM,j − zj‖L∞(D).(C.5)1016

1017

It is easy to check that the maximum of |ϕ̂(·, t) − ϕM (·, t)| occurs at either1018

the nodes {zi(0)}i or {zM,i(0)}i. Computing |ϕ̂(·, t)−ϕM (·, t)| at these nodes1019

provides1020

(C.6)

‖ϕ̂(·, t)− ϕM (·, t)‖L∞(Ω)≤‖DxϕM (·, t)‖L∞(Ω)max
j
|zM,j(t)− zj(t)|

≤K1 max
j
|zM,j(t)− zj(t)|.

1021

where K1 is the constant in (1.5).1022

Appendix D. Relation to MRA. We briefly relate our feature detection1023

method to that proposed in [30]. We specialise the formulation for a FV scheme,1024

generalisations to arbitrary order discontinuous-Galerkin type schemes can be found1025

in the references therein. We divide Ω into uniform Nl = 2l elements with l ∈ N.1026

Such a choice of Nl results in a hierarchy of grids parameterised by l. With Ili we1027

represent the i-th cell at level l. With uli(t) we denote the FV approximation of u(·, t)1028

in Ili .1029

In the middle of every Il−1
i lies a face that is shared between Il2i−1 and Il2i. Let1030

J l−1
i (t) denote the jump of the FV solution across this face i.e.,1031

J l−1
i (t) = |ul2i−1(t)− ul2i(t)|.(D.1)10321033

Thus, given uli, we can compute all of J l−1
i . The coefficient J l−1

i /2 is the same as the1034

so-called wavelet coefficient in the MRA. Define1035

Dl−1(t) := max
i∈1,...,2l−1

J l−1
i (t).(D.2)1036

1037

Similar to B(t) in (4.2), define1038

Bl−1(t) := {i : |J l−1
i (t)|> C ×Dl−1(t), i ∈ {1, . . . 2l−1}}.(D.3)10391040

At level l − 1, cells with index in Bl−1 are flagged. Due to the grid hierarchy, the1041

cells at level l that have a discontinuity are {2i− 1 : i ∈ Bl−1} and {2i : i ∈ Bl−1}.1042

Above, C is the same as that defined in (4.2).1043

As is clear from the definition of J l−1
e , in MRA one computes the jump in the1044

FV solution at every alternate face. Equivalently, MRA does not compute jumps1045
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at any face at level l − 1. Therefore, a discontinuity (independent of its strength)1046

aligned with any of these faces is not detected. Such discontinuities do not contribute1047

to an oscillatory numerical solution. Therefore, for the purpose of flagging cells for1048

suppressing oscillations, MRA is sufficient. However, in the present context, missing1049

out on large shocks is undesirable. Therefore, we compute the jumps at all the faces,1050

which allows us to detect shocks that could be aligned with cell boundaries.1051

Appendix E. Flagging of discontinuous regions. For simplicity, we assume1052

that uM (·, t) is a projection of u(·, t) onto the FV basis. At least computationally, for1053

a small enough grid size, similar observation holds for a uM (·, t) computed with a FV1054

scheme.1055

1. Locally differentiable: If u(·, t)|Ie−1∪Ie is C1 then Taylor expansion provides1056

Je ≤ ∆x‖∂xu(·, t)‖C0(Ie−1∪Ie).(E.1)10571058

2. Discontinuous: Let u(·, t) have a discontinuity inside Ie. Let the point of1059

discontinuity be zD = xe + l ×∆x where l ∈ (0, 1). Furthermore, let u(·, t)1060

be piecewise constant in Ie−1 ∪Ie with the value before and after the discon-1061

tinuity being u− and u+, respectively. Then1062

Je = |u− − u+|(1− l).(E.2)10631064

3. Kink: Assume that u(·, t) is continuous, is piecewise linear in Ie−1 ∪ Ie and1065

has a kink at zK = xe + l×∆x. Then, assuming u(zK , t) = 0, u(·, t)|Ie−1∪Ie1066

reads1067

u(·, t)|Ie−1∪Ie=

{
(x− xK)∂u− x < zK

(x− xK)∂u+ x ≥ zK
(E.3)1068

1069

Above, ∂u− and ∂u+ are the left and right slopes respectively. With the1070

above u(·, t), we find1071

Je =
∆x

2
|(∂u− − ∂u+)l2 − 2× ∂u+|.1072

1073

With the above relations and the form of B(t) given in (4.2), we draw the following1074

three conclusions. First, regions where the solution is C1 but has a large gradient1075

might be identified as discontinuities. Second, shocks with a strength (i.e., |u−−u+|)1076

of O(∆x) might go undetected. Third, kinks with a large left and right derivative1077

might be identified as discontinuities. In relation to the second point, in case Je(t) <1078

C∆x, where C is as given in (4.2), one can show that the semi-discrete numerical1079

solution already has the regularity necessary for a fast m-width decay.1080
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