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A POSITIVE AND STABLE L2-MINIMIZATION BASED MOMENT
METHOD FOR THE BOLTZMANN EQUATION OF GAS DYNAMICS*

NEERAJ SARNAT

Abstract. We consider the method-of-moments approach to solve the Boltzmann equation of
rarefied gas dynamics, which results in the following moment-closure problem. Given a set of mo-
ments, find the underlying probability density function. The moment-closure problem has infinitely
many solutions and requires an additional optimality criterion to single-out a unique solution. Mo-
tivated from a discontinuous Galerkin velocity discretization, we consider an optimality criterion
based upon L2-minimization. To ensure a positive solution to the moment-closure problem, we
enforce positivity constraints on L2-minimization. This results in a quadratic optimization prob-
lem with moments and positivity constraints. We show that a (Courant-Friedrichs-Lewy) CFL-type
condition ensures both the feasibility of the optimization problem and the L2-stability of the space-
time discrete moment approximation. We provide an extension of our method to multi-dimensional
space-velocity domains and perform several numerical experiments to showcase its accuracy.

1 Introduction Due to modeling assumptions, the FEuler and the Navier-
Stokes equations become inaccurate as a flow deviates significantly from a thermo-
dynamic equilibrium. This motivates one to consider mathematical models that can
approximate flows in all regimes of thermodynamic non-equilibrium. One such model
is the Boltzmann equation (BE) that govern the evolution of a probability density
function (pdf) f(z,t,£) € R* and reads

(1.1) L(f)=0 where £:=08,+¢ -V —Q.

Above, £ € R% is the molecular velocity with 1 < de < 3 being the velocity-dimension,
D :=[0,T) is the temporal domain with T' > 0 being the final time, and V represents a
gradient in the spatial domain Q C R? with 1 < d < 3 being the space-dimension. The
BE signifies the fact that the pdf changes due to the free-streaming of the gas molecules
and the inter-molecular collisions—the collision operator ) models the inter-particle
collisions, and the transport operator 0, + £ - V models the free-streaming of the gas
molecules.

In practical applications, one is not interested in the fine details of a pdf but in the
macroscopic quantities like density, velocity, temperature, etc. These quantities can
be recovered by taking the velocity-moments of the pdf. This motivates the method-
of-moments (MOM) approach, where, rather than directly solving the BE, we solve for
a finite number of moments of the pdf. The velocity-moments of the BE provide the
governing equation for the moments of f(x,t,-), or the so-called moment equations.
However, a finite set of moment equations is not closed—the flux term (£-V f) results
in a moment of degree higher than that included in the moment set. Nevertheless, one
can close the moment equations by solving the following moment-closure problem.

(1.2) Moment-closure problem: given a set of moments, find the underlying pdf.

There are infinitely many solutions to the moment-closure problem [21]. To single-
out a unique solution, one can introduce an optimality criterion by minimizing a
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2 N. SARNA

strictly convex functional of the pdf. We choose this functional to be the L2-norm of
the pdf. Our choice is motivated by a discontinuous Galerkin (DG) discretization of
the velocity domain that we interpret as an L2-minimization problem with moment
constraints—later sections provide further clarification.

A major drawback of L2-minimization (and so of a DG-discretization [3]) is that it
does not penalize the negativity of a solution—for the same reason, a Hermite spectral
method proposed in [15] does not ensure positivity. This is undesirable given that we
are approximating a pdf that is positive by definition. There is ample numerical and
theoretical evidence supporting the claim that a positive solution to a moment-closure
problem better approximates a pdf—see the different works on positive moment-
methods [1, 8, 10, 18, 20, 22, 30, 37]. Furthermore, in theory, a negative solution to a
moment-closure problem can result in a negative density and temperature, resulting
in a breakdown of the solution algorithm. For this reason, we enforce positivity
constraints on our L2-minimization problem. This results in a quadratic optimization
problem with moments and positivity constraints.

For the robustness of the algorithm, the feasibility of the quadratic optimization
problem is imperative. We show that a CFL-type condition ensures (i) the feasibility
of the optimization problem and (ii) the L2-stability of the moment approximation—
we insist that stability is crucial in analyzing the convergence of a moment approx-
imation [24, 26]. A proof for both these properties hinges on relating our moment
approximation to a discrete-velocity-method (DVM). We emphasize that our proof is
general in the sense that it is independent of the objective functional being minimized
to single-out a unique solution to the moment-closure problem.

Other than L2-minimization (with positivity constraints) one can consider entropy-
minimization. Despite the many favourable properties (see [16, 19, 20, 29, 31]), it is
challenging to compute an entropy-minimization based closure. A few reasons for this
are as follows. Firstly, to perform entropy-minimization one usually performs Newton
iterations where in every iteration one inverts the Hessian of the objective functional.
This Hessian (despite the adaptivity of basis proposed in [5]) can become severely
ill-conditioned—particularly inside shocks and for large moment sets—leading to a
slow (or no) convergence of the Newton solver [29, 30]. Secondly, in every Newton
iteration, one needs to compute integrals over the d¢-dimensional velocity domain.
An analytical expression for these integrals is usually unavailable and one seeks a
numerical approximation via some quadrature routine. The number of these quad-
rature points can grow drastically with d¢, making the solution algorithm expensive
for multi-dimensional applications [8, 29, 30]. For instance, the number of tensorized
Gauss-Legendre quadrature points grow as O(N%), where N is the number of quad-
rature points in one direction.

Replacing entropy minimization by L2-minimization (with positivity constraints)
does not necessarily solves the two problems mentioned above. We use the interior-
convex-set algorithm to perform L2-minimization and even for problems with strong
shocks and large moment sets, we did not encounter issues with the conditioning of
the Hessian. Our results suggest that L2-minimization could be an alternative to
entropy-minimization for flow regimes where entropy-minimization losses robustness.
Furthermore, since L2-minimization is robust for large moment sets, it is appealing for
an adaptive approach where depending upon the accuracy requirements, the moment
set can change locally in the space-time domain [2, 38].

We note that although our L2-minimization procedure is robust, to approximate
the integrals, we use tensorized Gauss-Legendre quadrature points in the velocity
domain, which, we expect, makes L2-minimization expensive. Specialized quadrature
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POSITIVE L2-MINIMIZATION MOMENT METHOD 3

points can make both L2 and entropy minimization efficient [8]. However, these
quadrature points do not guarantee the feasibility of the minimization problem—a
property we consider crucial for the robustness of the solution algorithm. To tackle
infeasible problems, one can try regularizing the minimization problem by relaxing
the moment constraints [4]. The use of a specialized quadrature with a regularized
minimization problem is an interesting direction to pursue and we plan to consider it
in the future.

We acknowledge that our work draws inspiration from the positive PN closure
proposed in [18] for the radiative transport equation. Indeed, we solve a similar
optimization problem as that solved by the positive PN closure. Nevertheless, our
work differs from [18] in the following ways. Firstly, unlike the linear isotropic colli-
sion operator considered in [18], we consider the non-linear Boltzmann-BGK operator
that we discretize using entropy-minimization to ensure mass, momentum and energy
conservation. Secondly, using the solution of the optimization problem, to close the
moment system, authors in [18] perform a spherical harmonics based velocity recon-
struction of the pdf. Our framework suggests that such a reconstruction is not needed
if one uses the same quadrature points to compute moments in the moment equations
and to solve the minimization problem. Thirdly, through numerical experiments, we
study the convergence of our moment approximation and compare it to the DVM.
These studies were not performed in [18]. Lastly, we establish robust (under van-
ishing Knudsen limit) L2-stability estimates for our moment approximation. Let us
emphasize that to the best of our knowledge, for gas transport applications, none of
the previous works consider L2-minimization based moment-closures with positivity
constraints.

We have organized the rest of the article as follows. In Section 2 we discuss
our moment approximation and the details of the BE. In Section 3 we discuss the
space-time discretization of the moment equations, the feasibility of the optimization
problem, and the stability of the moment approximation. In Section 4 we extend
our framework to multi-dimensional problems, and in Section 5 we perform numerical
experiments.

2 Moment Approximation Throughout this section we consider a one di-
mensional space-velocity domain i.e., d = d¢ = 1 in (1.1). An extension to multi-
dimensions is straightforward and is discussed in Section 4. We start by discussing a
positive L2-minimization based moment-closure and use it later to define a moment
approximation for the BE.

2.1 A positive L2-method-of-moments (pos-L2-MOM) Consider a m-th
order polynomial in & given as p,,(£) := £™. Collect all the different p,,(£) upto some
order (M — 1) € N in a vector Py (§) given as

(2.1) Par(€) == (po(&), - par-1(8)"

where (-)T represents the transpose of a vector. For a function & — g(¢) € R, we
introduce the shorthand notation

(2.2) (g) = / 9(6)de.

Note that the definition of Py implies that the vector (Pyg) contains the first M
moments of g.
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4 N. SARNA

For some moment vector A\ € RM | consider the mathematical formulation of the
moment-closure problem described earlier in the introduction

Even for a realizable moment vector A (i.e., there exists a g* > 0 such that A =
(Prpg*)), the above problem can have infinitely many solutions [21]. To single-out
a unique solution, we use L2-minimization as an optimality criterion. Since L2-
minimization does not penalize negativity and since we prefer a positive solution
to the moment-closure problem, we explicitly enforce a positivity constraint. This
result in an optimization problem given as

(24) gur = axgmin < lg7[2aqe) < (Parg) =\, 9° > 0.
g*€L*(R)
In the above minimization problem, as yet, it is unclear how to enforce the pos-
itivity constraint almost everywhere on R. To tackle this problem, we consider the
following two steps—we refer to [18, 29, 30] for similar steps related to the minimum-
entropy closure and the positive PN closure.

1. Truncate the velocity domain: We truncate the velocity domain R to ¢ :=
[€mins Emax)- A decent estimate for &y ax /min follows from the velocity and the
temperature field of the gas and is discussed later in Subsection 2.4. The
same sub-section discusses the pros and cons associated with truncating the
velocity domain.

2. Positivity constraints on quadrature points: To perform the integrals in the
minimization problem, we use some quadrature points defined over Q. We
enforce the positivity constraints only over these quadrature points. Although
our framework is valid for any set of space-time-independent quadrature
points, for completeness, we consider N Gauss-Legendre quadrature points
and we denote their weights and abscissas by {w;}; and {&;};, respectively.
Using the quadrature points, for some function £ — g(£) € R, we define

(2.5) (9) ~ (g)y = Zwig(fi)-

For convenience, with W (g) € RY we represent a vector that collects all the
values of g at the quadrature points i.e.,

(2.6) Wg)); :==9(&), Vie{l,...,N}

With the above two simplifications, the optimization problem in (2.4) transforms
to an optimization problem for W(gas) given as

1
(2.7) W(gar) = argmin = |[W*||% : ALW* =\, W* > 0.
WreRN 2

To write down the moment constraint (the underlined term) in the above problem,
we have used the relation

(2.8) (Prg®) = (Pug™)y = ALW(g7),

This manuscript is for review purposes only.
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POSITIVE L2-MINIMIZATION MOMENT METHOD 5
where the matrices A € RM*N and L € RV*N are given as

Wiy 1= _]
(2.9) A= (Py(&), .- Pu(n)), Lij= o

0, i#}J
Thus, L is a diagonal matrix containing the quadrature weights {w;} at its diagonal,
and A is a Vandermonde matrix. Note that in (2.7), for notational simplicity, we
defined W* = W(g").

REMARK 1 (A DG discretization). To see the similarity between the pos-L2-
MOM and o DG velocity space discretization and understand our motivation behind
considering L2-minimization, consider the optimization problem

. 1 * *
gb¢ .= argmin §||g ||2L2(Qs) : / Pyrg*dé = .
g7 E€L2(Q) Qe

The above problem is a continuous-in-velocity analogue of (2.4) but without positivity
constraints. Using the first order-optimality conditions, one can conclude that a solu-
tion to the above problem is given as (see page-2611 of [18] for a proof related to the
PN closure)

DG T
gy =@ PM7

where « is a vector of expansion coefficients related linearly to the moment vector
A—the exact form of a is not important here. The above expansion is the same as
the DG wvelocity discretization proposed in [3]. Thus, one can interpret pos-L2-MOM
as a DG wvelocity discretization with positivity constraints. Note that the optimization
problem corresponding to gy)¢ does not penalize the negativity of a solution therefore,
gﬁG is mot necessarily positive on the quadrature points.

REMARK 2 (A Hermite expansion). One can also interpret a Hermite approzima-
tion to a pdf as a solution to a weighted L2-minimization problem—uwe refer to [15, 43]
for an exhaustive discussion on Hermite expansions. Let p,,(§) denote the m-th order
Hermite polynomial He,,(§). Normalize the Hermite polynomials such that they are
orthogonal under the inner-product of the weighted L2-space L*(R,exp(—£2/2)). Let
Py be as defined in (2.1). Note that instead of monomials, the vector Pps(§) now
contains Hermite polynomials.

Consider a weighted L2-minimization problem given as

1

H . * (12 *

gr = argmin S92 @ expez/ay) ¢ (PMgT) = A
g-EL2 (Riexp(£2/2)) 2 (Feoxpl(e2/2)

Note that as compared to a DG approximation, in the above optimization problem, we
did not truncate the velocity domain. One can show that the solution to the above
minimization problem is given as

gar = AT Parexp(—€2/2),

which is similar to the Hermite spectral method proposed in [15]. Using the same
methodology as for the L2-minimization, one can impose positivity constraints in the
above minimization problem and enforce them on a set of Gauss-Hermite quadra-
ture points. We leave the development of a positive weighted L2-minimization based
moment method as a part of our future work.
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6 N. SARNA

2.1.1 Feasibility of the positive L2-minimization If there exists a z > 0
such that A = ALz then the optimization problem in (2.7) is feasible with the feasible
point W* = z. We collect this simple, but noteworthy, result as follows. We first
define a set of realizable moments

(2.10) R:={\ : NeRM \= ALz, 2> 0}.

Using R, we collect our statement related to the feasibility of the optimization prob-
lem.

LEMMA 2.1 (Feasibility of the optimization problem). The optimization problem
in (2.7) is feasible if A € R.

Note that for a given A € R, the number of feasible points of the optimization
problem vary depending upon the value of N relative to M. Let z > 0 be such that
A= ALz. A feasible point W* of the optimization problem (2.7) is a positive solution
of the linear system

ALW™* = ALz.

Since AL is a full-rank matrix (A4 is a Vandermonde matrix and the Gauss-Legendre
quadrature weights are positive), the above linear system has a unique solution W* =
z for N < M. Thus, the optimization problem has a single feasible point for N < M.
In contrast, the above linear system has infinitely many positive solutions for N > M,
resulting in infinitely many feasible points.*

The above discussion indicates that for N < M, we do not need to perform L2-
minimization. A unique positive W (gps) can be recovered by solving the moment
constraint ALW (gy;) = A. However, for N < M, a moment-based approach is
meaningless because we can directly compute W (ga) using a discrete-velocity-method
(DVM). Since N < M, this would be less expensive than first computing A and
then computing W (gys) using the optimization problem. Therefore, in the following
discussion we only consider N > M. The discussion here becomes clearer when we
later relate our moment approximation to a DVM.

REMARK 3 (Practical considerations while choosing N).  Practical considera-
tions suggest a compromise between small and large values of N. We use an inter-
convex-set algorithm to solve the minimization problem in (2.7). A crude estimate
for the complexity of this algorithm is O(N3) [42]. Thus, choosing a large value of
N increases the computational cost of solving the optimization problem, which, as we
discuss later, is the most expensive part of our moment approximation. On the con-
trary, we do not want N to be so small that the error (measured in some norm) in
our moment approximation is dominated by the error in our quadrature approrima-
tion. Numerical experiments suggest that choosing N between 2M and 5M is a good
compromise between accuracy and efficiency.

2.2 The Boltzmann Equation (BE) Equipping the BE with initial and
boundary data provides

L(f):OOHQXDXR’ f('7t:0,'):f00nQXR7

(2.11)
f=finon0Q_ x D.

ILet W* be a solution to ALW* = ALz. Let v be an element of the null-space of AL—since AL
is a flat matrix, its null-space is non-empty. Then, for all 8 such that min;(Sv;) > — min;(w;), we
find that W* + v is also a feasible point.
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POSITIVE L2-MINIMIZATION MOMENT METHOD 7

Above, the spatial domain is given as  := [Zmin, Tmax|, and 9Q_ is the inflow part
of the boundary that reads

(2.12) 00— :={(z,8) : £€-n(x) <0, x € 90},

where n(z) is a unit normal at 2 € 9 that points out of the domain. For simplicity,
we consider only inflow type boundary conditions and not wall boundary conditions
i.e., fin is the given data and is independent of the solution f [12]. An inflow type
boundary simplifies our result related to the stability of the moment approximation
discussed later. With some additional technical details, one can extend our stability
result to solid-wall boundaries—see [28] for stability results related to a solid-wall
boundary for a Grad’s moment method.

We normalise f such that the density p, the velocity v and the temperature 6 (in
energy units) reads

p(x,t) 1
(2.13) plx, t)v(z,t) = (Peonsf(,t,)), Peons(§) :=| &
p(z,t) (0(z,t) + v(z,t)?) £2

Note that for M > 3, Peons(€) is nothing but the first three entries of Py ().
We consider a Boltzmann-BGK collision operator given as

(214) Q(f($,t,§)) = (fM(xata 5) - f(xatag))7

1
T(z,t)
where the collision frequency 7(x,t)~! reads 7(z,t)~! := Cp(x,t)0(x, )}~ with w
begin the exponent in the viscosity law of the gas [13]. The collision operator rep-
resents the fact that the pdf f(x,t,-) is pushed towards the Maxwell-Boltzmann pdf
fm(z,t,-) given as

(215) f/\/l(xvtag) = p(x’t))exp (_(f_'UW) .

270 (x, t 20(x, t)

We can also interpret faq as a solution to an entropy-minimization problem. Out
of all the pdfs that have the same mass, momentum and energy as f(z,t,-), the pdf
fm(z,t,-) is the one that minimizes the Boltzmann’s entropy. Equivalently,

(2.16) Im(z,t, ) = argmin {(f*log(f*)) : (PeonsS™) = (Peonsf(z,t,-))}.
f*(€)=0

Later, we use the above interpretation of fa to discretize it on a velocity grid. A
noteworthy property of Q(f) is its collision invariance i.e., { Peons@(f)) = 0 for all f in
the domain of ). This ensures that the BE conserves mass, momentum and energy.
By considering M > 3, which ensures that P.ons(€) is contained in the vector Py (),
and by carefully discretizing the collision operator as in [22], we will ensure that our
moment system also conserves these quantities.

2.3 Moment equations We present a moment approximation to the BE based
upon the pos-L2-MOM described in Subsection 2.1. To derive a governing equation
for the moments (P f(z,t,-)), we take (discrete) velocity moments of the BE given
in (2.11) to find

(217) 6t <PMf(x7t’ )>N + ax<PM£f(xvta )>N = <PMQ(f(x7t’ ))>N .
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Recall that (-) y is as defined in (2.5) and is a numerical approximation to the integral
)

The above system of equations is not closed—the underlined flux-term contains a
M-order moment that is not contained in the moment vector (Pas f(x,t,-)) 5. To close
the system of equations, using the moments (Pas f(x,t,-)) 5, we need to approximate
the values of f(z,t,-) at the quadrature points i.e., we need to approximate the vector
W (f(z,t,-)) using the moments (P f(z,t,-)),. We approximate W(f(z,t,-)) by
W (fm(z,t,-)). To compute W(far(x,t,-)), we use the L2-minimization problem given
in (2.7) with the moment vector A set to (Pas f(z,t,-)) . This results in the following
closed set of moment equations

0 (Pt far)y + 0u (Pufhyy == (Pat Sy — (Patfar) ) on 0 D,
(Parfar(t = 0))y = (Parfo)y on €.

Our space-time discretization Subsection 3.2 will discuss the boundary discretization.
Let us emphasis again that to compute the flux term (Pr& far(,t,-)) 5y, we only need
the value of W(fa(x,t,-)), which are available after solving the L2-minimization
problem.

The pdf fa, N is an approximation to the Maxwell-Boltzmann pdf fa4 and is such
that W (fa,n) is a solution to an entropy-minimization problem given as [22]

(2.18)

(2.19)

W(fmn(z,t,-)) = argmin {Z wi log(w!)w; : AconsLW™ = (Peons far(z, 1, )>N} .

«cRN
W=eRS, i

The above problem is a discrete-in-velocity analogue of the entropy minimization
problem given in (2.16). Furthermore, the moment constraints in the minimization
problem ensure that the moment system (2.18) conserves mass, momentum and en-
ergy.

2.4 Computing the velocity cut-off Recall that we truncate the velocity
domain R to Q¢ = [Emin, Emax]- We use the same technique as a DVM to compute the
velocity cut-off &, ax/min- The technique is summarised as follows—for further details,
we refer to [7, 22] and the references therein. Estimating &yax/min using the velocity
and the temperature of the gas provides

Smin :=  inf (v(:z:,t) — m/@) ,

(z,t) QXD
(2.20)
Emax :=  Sup (v(x,t) + c\/e(m,t)) .
(z,t)eQx D

From arguments in statistical mechanics, a value of ¢ between 3 and 4 is desirable.
Choosing ¢ = 3.5 balances accuracy and computational cost. During numerical ex-
periments, we compute a reference solution using a DVM. To ensure that the DVM
solution is sufficiently refined, we perform a convergence study by first estimating
&max/min Using the initial data and the above formulae and then increasing {max (and
decreasing &min) till the relative error between two subsequent refinements drops be-
low an acceptable value. We use &,ax from the last refinement cycle for both the
DVM and the pos-L2-MOM-—Section 5 provides further details. In practical appli-
cations, one can estimate v(z,t) and 6(x,t) using a Navier-Stokes solver, which is
usually much cheaper than a BE solver [7].
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POSITIVE L2-MINIMIZATION MOMENT METHOD 9

REMARK 4 (Pros and cons of a space-time-independent &,,,.x). Our choice of &max
(and &min) is space-time-independent, which has both positive and negative conse-
quences. Such a velocity cut-off can be accurate only if, on the entire space-time
domain, f(x,t,-) is sufficiently small outside of Q¢. In terms of the macroscopic quan-
tities, we can expect to be accurate only for flows with a velocity and a temperature
inside a certain range [22]. Let us mention that we share these negative consequences
of truncating a velocity domain with the DVM and the entropy-minimization based clo-
sures [22, 30]. On the positive side, as we discuss later, with a space-time-independent
Emax it s straightforward to ensure the feasibility of the optimization problem in (2.7).
Furthermore, the stability of the moment equations that we establish later can also be
attributed to Emax being fized in space-time.

REMARK 5 (A space-time-dependent &nmax). To overcome the limitations men-
tioned in the previous remark, similar to [9], one can introduce space-time-dependence
in Emax- We failed to introduce this dependence without sacrificing the feasibility of the
optimization problem (2.7) and the stability result discussed later. To overcome the
feasibility issue, one can try modifying the optimization problem by regularizing it [4].
The regularization adds the moment constraint as a penalty term and tries to mini-
mize both the L2-norm of the pdf and the error in satisfying the moment constraint.
As for the stability, it is unclear how one can ensure it with a space-time-dependent
Emax- We leave the development of pos-L2-MOM with space-time adaptive Epmax as a
part of our future work.

3 Space-time discretization
3.1 Preliminaries We partition € = [Zmin, Tmax]| into IV, intervals given as

N,
(3.1) Q= UL‘, T = [zio1/2,Tiv1)2]s
i=1

where 1 /9 = Tin and Ty, 11/2 = Tmax. With {t;}i=1,.. .k C D we represent a set of
discrete time instances such that 0 = ¢; < ty--- < tx = T. For simplicity of notation,
we assume that all the space and the time intervals are of the same size Az and At,
respectively. An extension to non-uniform space-time grids is straightforward. We
denote the finite volume (FV) approximation of (Pys far(x,t,-)) and (Pa fam n (2, ¢, +))
in the i-th cell and at the k-th time instance by

e
(3.2)
(Prrfiai) ”é /I (Prfamn (@t )y dov.

Above, faq n is the discretization of the Maxwell-Boltzmann distribution introduced
in (2.16) and for notational simplicity, we have suppressed the M dependence in fik.

Using the matrix A and L given in (2.9), we can express the space-time discrete
moments in a matrix-vector product form as

(3.3) (PufFyy =ALW(fF), (Pafiai) = ALW(f34.),

where W (fF) and W(f/’\“,“) are the FV-approximations to W (fas(x,t,)) and
W (fm(z,tg,)), respectively, in the i-th cell and at the k-th time step. For later
convenience, with fus,n, we represent an F'V approximation to fy; defined as

(3.4) farn, (.5, €) = fR(€), Ve €T ke{l,....,K}, &€ {&}

This manuscript is for review purposes only.
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3.2 Evolution scheme The evolution scheme consists of four steps outlined
below. We present these steps for some representative t = t;. Each step is repeated
from k =1to k=K — 1. For k = 1, we initialize with

(3.5) (Puff)y = é /I (Prvfo(z, )y dz, Vie{l,...,Ng},

where fj is the initial data in (2.11). We approximate the above space integral with
10 Gauss-Legendre quadrature points in each cell.

1. Entropy-minimization step: Using the conserved moments {<PconS ff> N}i’
solve the entropy minimization problem in (2.19). This provides the discrete
Maxwell-Boltzmann pdf {f k/tz}z

2. Collision step: With the output of the previous step, perform collisions with
an implicit Euler time-stepping scheme. At some intermediate tg+ € (tg, tgpt+1)
and for all ¢ € {1,..., N, }, this provides [14]

(3.6) <PMfik*>NA_t <PMfik>N - T(l'itk*) <<PMf/\:"i>N N <PMfik*>N> '

There is an explicit solution to the above implicit collision step. Since the
collision step preserves mass, moment and energy and since the solution of the
entropy-minimization problem (2.19) is unique for a given set of conserved
moments, we find W(f/’f,”) = W(f}(;). This implies that <PMf/]\g/*t,i>N =

<PMf/It/t,i>N’ which provides

X 1
<PMfik >N 1 + At/7(x;, tre) <PMfik>N

At)7(zi, thr)
14+ At/7(z;, ty

(3.7)

) (Prfiai)y -

3. Optimization step: Using the moments { <PM fl-k* > N}i’ compute the weights
{W(fF)}; by solving the optimization problem in (2.7).

4. Transport step: Using the output of the previous step, perform the transport
step given as

(Parff)y = (Puft )y _ 1 - -
(38) Y = (FOV(R) W)

- FW (), W) -

To impose boundary conditions, for 7 = 1, set W ( ff_’*i) =W (fin(t,-)) and for
i = N, set W(flkﬁ) = W(fin,n(t,-)), where f;, is the boundary data given
in (2.11). Above, F : RY x RY — RM is the numerical flux and since we
consider a kinetic upwind numerical flux, it reads [1]

(3.9) F(Wi,Wa) = % (AL(E — [E)Wi + AL(E + |E)Wa) .

Above, A and L are the two matrices defined in (2.9). The matrix = is
a diagonal matrix with the locations of the quadrature points {&;}; at its
diagonal. Furthermore, |Z| is a matrix representing the absolute value of Z in
the sense that (|=]);; = |E;;|. For clarity, to express F in a standard kinetic
upwind flux form, note that AL(Z £ |Z|)W1 = (Pam(§ £ [€]) f1) n-
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REMARK 6 (Space-time locality of the optimization step). The optimization step
(and also the entropy minimization step) is a local in space-time operation. We loop
over each spatial cell, solve the optimization problem, add the local contributions to
the numerical flux and move over to the next cell. Therefore, at any given point in
time, we store only the moments in all the spatial cells and not the values of the pdf
at the quadrature points. This results in a drastic reduction in memory consumption
since, in practice, the number of quadrature points are much larger than the number
of moments—see [29, 30] for a similar comment related to a mazimum-entropy clo-
sure. Let us emphasis that in comparison, a DVM stores the values of the pdf at the
quadrature points in all the cells, which, particularly for multi-dimensional velocity
domain, results in a memory intensive algorithm [7].

3.3 Properties of the evolution scheme The entropy-minimization problem
in (2.19) ensures that our moment approximation conserves mass, moment and energy.
In addition to being conservative, the following discussion establishes that our space-
time discrete moment approximation (i) under a CFL-type condition, results in a
feasible optimization problem; and (ii) is L2 stable in the sense that the L2-energy
ngzzl||<PM fk > N |% has an upper-bound that depends solely on the initial data fo
and the boundary data f;,.

We start with making the following assumptions on the initial and the boundary
data. We assume that the first M-moments of fy and f;;, belong to the realizability
set R defined in (2.10) i.e.,

(3.10) (Pr fin(z,t,-))y € R, (Pufolz,-))y € R, Y(z,t) € Qx D.

The above assumption will be helpful in establishing the feasibility of the optimization
problem in the optimization step. For the boundary data, we also assume that

|fin('7ta ')|8Q,N< o0, vt € Dv

(3:11) where | fin (-, ¢, ) |30, n:= Z j{gQMi’n(x)|fin(xat»£i)2wids~

&in(z)<0

Above, the unit vector n(z) is as given in (2.12), and {&;} and {w;}; are the abscissas
and the weights of the quadrature points, respectively. Note that the assumption
on |fin(-,t,-)]aq,N is a discrete-in-velocity analogue of a standard assumption that
fin(,t,+) € L2090, |¢ - n(x)|)—see [40] for further details. Here, L2(0Q_, | - n(z)|)
represents a L? space over d2_ with the Lebesgue measure |¢ - n(z)|, and the set
O _ contains all the incoming velocities and is as defined in (2.12). Intuitively, the
above assumption states that the total L2-energy flux associated with f;, should be
bounded. We insist that the above assumptions are valid for most applications of
practical relevance.

3.4 Feasibility of the optimization problem We show that under a CFL-
condition, the moments resulting from the collision step and the transport step belong
to the realizability set R given in (2.10) i.e., both the steps are realizability preserving.
The feasibility of the optimization problem then follows from Lemma 2.1. The details
are as follows.

Our result is a straightforward extension of the proof for the realizability preserv-
ing space-time discretization of radiative transport equations considered in [6]. Using
the definition of R given in (2.10), we find

(312) a1\l + agAg € ]’%7 Val, as > 0, )\1, A2 € R.
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We consider the collision step given in (3.7). Suppose that (PyfF) € R, which
implies that entropy-minimization step is well-posed (see [22]) and that (P f/’f/”> €
R. Then, the above relation implies that for any At, 7(x;,t;) > 0, the collision step
is realizability preserving i.e., for all i € {1,..., N}, we have <PMfi’“*> € R.

We show that under a CFL-condition, the transport step in (3.8) is also realiz-
ability preserving. Replacing the numerical flux function from (3.9) in the transport
step given in (3.8) and re-arranging a few terms provides

(Pp )y =AL(L = AZ)W(fF)

A . — A - x
+ S AL(E|-E)W (fl) + §AL(|:\+:)W(fi'i1)'

(3.13)

where A := %. For all ¢ € {1,...,N,}, due to the positivity constraints in the
optimization problem (2.7), we have W(fF") > 0, which, for A > 0, implies that the
underlined terms are in R. To ensure that the first term on the right is in R, we

choose
(3.14) 0 < A < min{|&A ] [mil}-

The above range of A, the relation in (3.12) and the assumption on the initial and
the boundary data (3.10) provides (Py ff*') € R. We collect our findings in the
result below.

LEMMA 3.1. Consider the evolution scheme outlined in Subsection 3.2 and de-
fine A = At/Ax. Assume that the initial and the boundary data satisfies (3.10),
then the quadratz’c optimization problem in the evolution scheme is feasible if A €

(0, min{[€al, [€inl .
3.5 L2 stability of the scheme Define the total L2-energy at t = ¢4 as

(3.15) Ekt —ZH M fETY I

We establish that €11 is bounded by the L2-energy of the previous time-step & and
| fin (-, tk, )|oa,n. Recursion then implies that £;4q is bounded solely by the initial
and the boundary data.

For convenience, we define a few objects. For a vector z € RV, with ||z||; we

represent the norm
Iz||L:= V2T Lz.

Interpreting z as a vector that contains the value of a function g : ¢ — R at the quad-
rature points and recalling that L is a diagonal matrix with the quadrature weights
on its diagonal, we conclude that ||z||r represent an approximation to ||g||z2(q,). We
bound the [?-norm of a moment vector A = ALz as

(3.16) N2> omin(AVD)|IzlL, Az < Tmax(AVI)l2]lL,

where oy, /maX(A\E) represent the minimum/maximum singular value of the matrix

AV'L. We will use the above two bounds to convert stability results for the DVM to
stability results for the moment approximation.

This manuscript is for review purposes only.
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189 3.5.1 Collision step We start with the collision step given in (3.6). Applying
490 triangle’s inequality to the collision step we find

2 At)r | i )
* §(1+At/7)25k+2(1+m/r> Z H<PMfM,i>N||lz
—_— ————

i=1
SOmax (AVL?2 W (£ DI,

491 (3.17)

192 The bound on the right hand side follows from the inequalities in (3.16). From page-92
493 of [23] we know that the solution to the entropy-minimization problem (2.16) satisfies

494 (3.18) W (fi0)llZ< N? exp(2Nt).

496 The above relation and the bound on &+ given in (3.17) provides

At
197 (3.19) & < /7

2
T A o R 2 a3
198 (1 + At/T)ng +2 (1 n At/T) Na:Jmax(A\/Z) N exp(QNtk)_

199 3.5.2 Transport step With the following three steps, we establish the stability
00 of the transport step given in (3.8). (i) We recover a DVM underlying the transport
I step in (3.8). (ii) Using stability properties of an upwind scheme, we establish the
2 stability of the DVM. (iii) Finally, relating the discrete velocity solution to the moment
3 solution, we establish the stability of the moment scheme. The details of these three
1 steps is as follows.

5 We consider the reformulated transport step given in (3.13). Let N'(AL) represent
6 the null-space of the matrix AL, where A and L are as given in (2.8) and (2.9),
7 respectively. Then, the transport step provides

W) =(1 = MENW(fF)
508 (3.20) A A
N . o o
+ 5('5‘_:)W(fi+1) + §(|5|+5)W(fi—1) +,
500 where v belongs to N'(AL). Since the moments at time step ¢, 11— given as ALW (fF+)—
510 are invariant under the choice of v, we choose v = 0. This makes the above evolution
511 equation a space-time discretization of a system of decoupled linear advection equa-
512 tions given as ;W (f) + 29, W (f) = 0. The discretization uses an explicit Euler and
513 an upwind FV scheme to discretize the space and the time domain, respectively. From
514  Example-7.2 of [33] we know that such a discretization is L2-stable under the CFL
515 condition

56 (3.21) 0 < A < min{[€al, [€nial} /2

518 This provides

519 (3.22) SIWEEIZ D IWEEDNZ A+ fin s trs o, n-

520 i=1 i=1

521 Above, |-|sa,n is as defined in (3.11). Using the bounds in (3.16) , we express the
522 above bound in terms of moments to find

Efé (323) gk+1 S ’%(A\/E)ng* + Umax(A\/E)2|fin('7 tka )|?)Q’N

25 Above, k(AV'L) represents the condition number of the matrix Av/L. We collect our
26 stability estimate in the result below.
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THEOREM 3.2. Consider the evolution scheme given in Subsection 3.2 and let &
be the L2-energy defined in (5.5). Assume that the boundary data satisfies (3.10)
and that the ratio A = At/Ax satisfies A € (0, min{|¢;L |, |65 |}/2]. Then, &4y is

bounded as
(3.24) Eky1 < Br + B + Bin
where
2
o 2
By, :=r(AVL) T AT
2
(3.25) o 2 2 At/T 3
Bt :=2k(AVL)?0max (AVL) T AT N, N3 exp(2Nty,),

Bin ::Umax(A\E)2|fin(" 1778 ')l?)Q,N'

We make the following remarks related to the above theorem.

1.

The terms By, By and By, appearing in (3.24) represent the contribution
from the previous time step, the discrete Maxwell-Boltzmann distribution
function and the boundary data, respectively, into bound for the L2-energy
at time txy1. Note that out of all these three terms, only By depends upon
the solution of the previous time-step.

. For the limit 7 — 0, at least formally, the BE results in the Euler equations

[13]. Under this limit, the bound in (3.24) is robust, which is a result of
performing the collision step implicitly.

. The DVM corresponding to the transport step given in (3.20) is a space-

time discretization of a linear hyperbolic PDE. As a result, the L2-bound
for the transport step (given in (3.23)) is linear in time. In contrast, since
the collision operator is non-linear, the collision step is non-linear. One can
attribute this non-linearity to the exponential-in-time growth in Bay.

. For a fixed truncated velocity domain €)¢, consider the limit N, M — oo with

N > M. Under this limit, the bound on k41 is not robust because—at least
heuristically—both #(AvVL) and opa(AVL) are almost independent of N
and grow polynomially with M. To derive bounds that are independent of
k(AV'L) and oyax(AVL), one should directly consider the moment approxi-
mation without accessing the underlying DVM. As yet, it is unclear how to
proceed with such a technique.

Nowhere in the proof of the above theorem we used the fact that we minimize
the L2-norm in the moment-closure problem given in (2.7). Therefore, the
bound on &1 holds for any other objective functional and specifically for
the minimum-entropy closure considered in [16, 30].

3.6 Computational costs We study the cost of evolution scheme outlined in
Subsection 3.2. We consider the cost of a single time-step performed in a single spatial

cell.

1.

Entropy-minimization step: We use Newton iteration to solve the entropy-
minimization problem where we compute and invert a Hessian H(x,t) given
as

(3.26) (H (, t))kl = Z (Pcons(fi))k (Pcons(fi))l exp(Peons - (7, t))w;,

i
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where a(z,t) are the Lagrange multipliers in R®. Computing the Hessian
is an O(N) operation. As a stopping criterion to the Newton solver, we
consider a user-defined tolerance of TOL in the moment constraints. Suppose
we need mrgr Newton iterations to reach this tolerance then, the total cost
of entropy-minimization is given as

Centropy = O(NmTOL)-

In all our numerical examples, we choose TOL = 1078,

2. Collision step: Computing the M-moments of the discrete Maxwell-Boltzmann
pdf is an O(N M) operation and updating the moments in the collision step
is an O(M) operation. Thus, the total cost of the collision step is given as

Coot = O(MN).

3. Optimization step: We use the quadprog routine from matlab to solve the
optimization problem in (2.7) and we use the default interior-point-convex
solver with all the parameters set to their default values. Usually, it is difficult
to estimate the complexity of this algorithm but a crude estimate gives [42]

(3.27) Copt = O(N?).

4. Transport step: Flux computation is an O(MN) operation and the time
update of the moments is an O(M) operation. Thus the cost of the transport
step is

Ciran = O(MN).

Summing up the above costs, the total cost of our evolution scheme is given as
Ctotal = (’)(Nm—mL) + O(MN) + O(Ng)

REMARK 7 (Efficiency of the optimization step). For N > M (the values of N
that interest us, see Remark 3) and a sufficiently small myg, solving the quadratic
optimization problem is the most expensive part of the algorithm. A possible way to
overcome this high cost is to train an auto-encoder/gaussian-regression to replace the
quadratic optimization problem [17, 25]. We plan to consider this direction in the
future.

4 Extension to multi-dimensions Maintaining consistency with our numer-
ical experiments, we propose an extension of our method to two-dimensional planar
flows. An extension to three-dimensional problems is similar and is not discussed
for brevity. For 2D problems, we reduce the storage requirements by solving for the
reduced pdfs h; and hg given as [41]

hl(xat7§17§2) ::/ f(mat7£17§2a§3)d§37
(4.1) "

h?(mat7£1a§2) ::/I\%E?Q)f(x’taghééa{?))dg?r

In the coming discussion, ¢ will represent a velocity vector in R? and with (g) we
will represent the integral of a function ¢ ~ g(&) over R2. To derive the governing
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equation for hy and hg, we multiply the BE given in (1.1) by 1 and &2 and integrate
over R with respect to &3 to find

1
(4.2) Othi + &103, hy + £205,h = = (him — hi) .

Above, h; o represents the reduced Maxwell-Boltzmann pdf and is given as

(e =
(4.3) him= 50 exp ( , hom = o exp 50 ,

where, |-| is the Eucledian norm of a vector. Note that the mass p, the momentum
pv and the temperature 6 can be recovered from h; and ho via

(4.4) p={m), pv=(eh), pb = ((167h) — plof+ {hr)).

4.1 Moment equations The moment approximation we discuss below is the
same for both hy and hs. Therefore, for the simplicity of notation, we present our
approximation for some representative h. Similar to the 1D case, we truncate the
VGlOCity domain to R2 ) Q§ = [fl,minv gl,max] X [fZ,minv gQ,max]' To ComPUte gi,max/mina
we adopt the same methodology as that outlined in Subsection 2.4. We consider ten-
sorized N x N Gauss-Legendre quadrature points inside ¢. Using these quadrature
points, we approximate (-) by () y y-

To derive a governing equation for the moments of h, we first define a polynomial
in &, With 8y = (BM, BM) € R? we represent a multi-index with each entry being
a natural number and the {'-norm of By being equal to M. Using By, we define

a M-th order polynomial in § via pg,, = & 1M§2 iw. Note that for a given M, By is
non-unique—for M = 1, 8y could either be (0,1) or (1,0). In a vector Pys(€), we
collect all the polynomials pg,, upto order M — 1. For completeness, we present the
entries in Py (&) for M =3 and M = 5.

T

M=3: PM(&) = (135175276575152755) )
(45) M=5: PM(§> = (1a§17€27£%7£1£27£§a§%7

26,662,638 63¢k, 262, 6,68, ¢

Note that for M = 3 and M = 3, Py;(§) contains 6 and 15 entries, respectively.

For some M € N, we approximate h by hjs where we compute hjy; (more precisely
W (har)) using the L2-minimization problem given in (2.7). To evolve the moments of
har, we use a multi-dimensional version of the moment system given in (2.18), which
reads

O <PMhM>N,N +0z, <PM51hM>N,N + Oz, <PM§2hM>N,N
1
(46) = ;(<PMhM,N>N’N7<PMhM>N7N) OHQXD,
(Prhar(t = 0)) y v = (Parho) y v on €2

Above, haqn is a discretization of the Maxwell-Boltzmann pdf that results from
solving a multi-dimensional version of the optimization problem given in (2.16)—see
[22] for an explicit form of this optimization problem. The treatment of boundary
conditions is the same as that for the 1D case and is not discussed for brevity.
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624 4.2 Space-time discretization For simplicity, we consider a square spatial
625 domain € = [Z1 min, Z1,max] X [T2,min; L2,max). We discretize Q with N, number of
626 uniform elements in each spatial dimension and with Az we represent the grid spacing.
627  With some additional technical details, it is straightforward to extend our framework
628 to curved domain discretized with unstructured meshes. For simplicity, we consider
629 a fixed time-step of size At.

630 We index a spatial cell with (i,j) where ¢,5 € {1,...,N,}. With <Pth,j>N,N
631 we represent a FV approximation to (PMhM(ac,tk,~)>N7N in the cell Z; ;. Given
632 <Pth j> Nt We want to compute the FV approximation at the next time instance.
633  To this end we follow the same four steps as those outlined for the 1D-case in Sub-
634 section 3.2. The entropy-minimization step, the collision step and the optimization
635 step are very similar to the 1D case and, for brevity, we do not repeat them here. The
636 transport step is slightly different and is given as

< fkjﬂ> _<PMfilf;>NN
At

(fl z+1,1 W(f[’f;*))
WD) W)
— (R W)

~Fa(W( Z“J*>,W<flff,;’il>>).

E\H

—F

—

637 (4.7)

l>‘H

638 Above, {W(flkj*)}” results from the optimization step and F1 (W7, Wa) and Fo (W1, Wa)
639 are the numerical fluxes given as

1 — — —_ -
640 (48) ]:i(Wh Wg) = 5 (AL(:.Z — |:i|)W1 + AL(:Z‘ + |:z|)W2) .

642  Above, A and L are multi-dimensional versions of the matrices given in (2.8) and Z;
643 is a diagonal matrix with all the i-th components of the quadrature point’s locations
644 at its diagonal.

645 Assuming that the initial and the boundary data satisfies (3.10), one can show that
646 the space-time discretization results in a feasible optimization if the ratio A = At/Ax
647 satisfies

648 (4.9) 0<A< %miin {min {[&; faxl [€minl }} -

650  Similarly, one can show that the space-time discretization is L2-stable if A satisfies

651 (410) 0<A <- L mln {mln {|§z max| |£7, mm'}} :
652 4

653 A proof of the above two results uses the exact same technique as that for the 1D
654 case and is not repeated for brevity.

655 5 Numerical Results For simplicity, we non-dimensionalize the BE and all
656 the macroscopic quantities with appropriate powers of some reference density po,
657 temperature 6y and length scale [. This introduces the Knudsen number Kn, the
658 inverse of which scales the collision operator Q(f), and reads Kn := 7o/ (\/%l)—we
659 refer to [32] for the details of non-dimensionalization. In the definition of the collision
660 frequency 7(x,t)~! given in (2.14), we choose C' = 1 and w = 1. Our choice of C' and
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661 w does not necessarily corresponds to a physical system and is made for demonstration
662 purposes.

663 We consider the following test cases.

664 1. Test case-1 We consider the pdf

_ 1 (€~ u)? 1 C(E—w)?
o (5:1) f@‘mex"( 20, )*me’“’( 2, )

667 Given the first M moments of f and using the pos-L2-MOM, we approximate

668 the M + 1-st moment of f. We study the error of this approximation with
669 respect to the number of moments M. We choose 6y = 3, up = —4, 6 = 4
670 and u; = 5, which ensures that f is far away from a Maxwell-Boltzmann
671 distribution function in the Kullback—Leibler divergence sense.

672 2. Test case-2 For a one-dimensional space-velocity domain, we consider the
673 Sod’s shock tube problem from [35]. We set = [-2,2] and D = [0,0.3].
674 Recall that D is the time domain. As the initial data, we consider a gas at
675 rest and at equilibrium. We initialize the temperature § with a constant value
676 of one and we initialize density as

677 (5.2) plz, t=0)= {7’ r=0

678 1, £>0

679 As the boundary data f;,, we consider a Maxwell-Boltzmann pdf. At x =
680 Tmin and for all ¢ € D, we set density to 7, velocity to 0 and temperature
681 to 1. The velocity and the temperature at the right boundary remains the
682 same but the density changes to 1. We consider two different values of the
683 Knudsen number—Kn = 0.1 and Kn = 0.01.

684 3. Test case-3 For a one-dimensional space-velocity domain, we consider the
685 two-beam interaction experiment from [30]. The space-time domain Q x D
686 remains the same as the previous test case. As the initial data, we consider
687 a gas at equilibrium with a constant density and temperature of one. As the
688 initial velocity, we consider

689 (5.3) o(z,t =0) = {1’ 20

690 -1, z>0

691 As the boundary data f;,, we consider a Maxwell-Boltzmann pdf. At x =
692 Tmin and for all ¢ € D, we set density to 1, velocity to 1 and temperature
693 to 1. The density and the temperature at the right boundary remains the
694 same but the velocity changes to —1. We consider two different values of the
695 Knudsen number—Kn = 0.1 and Kn = 0.01.

696 4. Test case-4 We consider a two-dimensional spatial domain and a planar flow
697 regime. We choose 2 = [0,2] x [0,2] and D = [0,0.2]. We consider a micro-
698 bubble dispersion problem where we start with a fluid at equilibrium and at
699 rest. We consider a constant temperature of one and consider a density given
700 as

703 (5.4) plx,t =0) = po + exp(—|z — 1*x10%), Vz € Q.

703 As the ground state density, we set pg = 1. As the boundary data f;,,
704 we consider a Maxwell-Boltzmann pdf with a density pg, velocity zero and

705 temperature one. We consider a Knudsen number of 0.1.
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We emphasis that for this test case, it is crucial that the moment-closure
problem has a positive solution. Otherwise, the density can get negative
resulting in a breakdown of the solution algorithm. We refer to [27] for
a similar experiment involving the linearized BE and the Grad’s Hermite
expansion, which is not necessarily positive. There, the deviation in density
gets negative for small values of M. However, since the BE is linearized,
negative densities do not crash the solution algorithm.

5.1 Test case-1 We truncate the velocity domain to Q¢ = [—20,20]. This
ensures that the support of f (upto machine precision) is contained inside €2¢. We
compute W (fys) using the optimization problem given in (2.7).

5.1.1 Error in the higher order moment Recall that we used fj; to close
the moment system in (2.18) by approximating the M-th order moment of f. The
relative error of this approximation is given as

(EM(fa =)y
EMf)n '

We study £(M) for different values of M. We vary M from 3 to 22 in steps of one,
and we fix IV at a sufficiently large value of 40.

As M increases, £(M) appears to converge to zero, although not monotonically—
see Figure la. Note that this non-monotonic convergence is typical also for a Grad’s
moment approximation [11, 27, 36]. However, unlike the Grad’s moment approxima-
tion where the error convergences monotonically for either the even or the odd values
of M, the convergence behaviour of the pos-L.2-MOM is rather random. For instance,
the error (slightly) increases from M = 5 to M = 7. Similarly, the error (slightly)
increases from M = 15 to M = 17. Nevertheless, for M > 16, the error appears to
converge monotonically.

(5.5) E(M) =

5.1.2 Error in approximating the pdf For different values of M, Figure 1b
compares f to fys. To extend the discrete values of fis to §)¢, we perform a piecewise
linear interpolation between the quadrature points. For M = 3, pos-L2-MOM is
unable to capture the general shape of the function. Nevertheless, increasing the
value of M improves the results. Already for M = 5, we observe that fj; has two
distinct peaks and starts to capture the shape of the function. Increasing M from
5 to 7 does not show much of an improvement. However, increasing M from 7 to 9
improves the results significantly. The result for M = 9 almost overlaps the exact
solution with little deviations. Let us mention that for all values of M, fy; remains
positive.

For a comparison, we compute a DG approximation of f. We represent the DG
approximation by fD¢ and compute it by projecting f (under the L?(Q) inner-
product) onto the first M Legendre polynomials in £. For the different values of M,
Figure 1c compares f to f1¢. Since a DG approximation does not penalize negativity
(see Remark 1), for all values of M, fD¢ is negative for some part of the velocity
domain. Furthermore, only for M > 11, the DG approximation starts to capture
the general shape of the function. Compare this to fa;, which, already for M = 5,
accurately represents the shape of the function.

The superior accuracy of fy;—as compared to f1¢—in approximating f is clearly
visible in Figure 1d, which compares the relative L2-error in approximating f. The
difference between the error values becomes larger as the value of M increases. For the
largest value of M equals 22, the relative L2-error resulting from the approximation fjs
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is 8 x 1074, which is ~ 1072 times smaller than that resulting from the approximation
DG
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Fig. 1: Results for test case-1. (a) and (d) y-axis is on a log-scale.

5.2 Test case-2

5.2.1 Reference solution We compute the reference solution using a DVM
proposed in [22]. We consider an explicit Euler time-stepping scheme and a first-
order FV spatial discretization. We truncate the velocity domain to [—7,7], and
place N = 350 velocity grid points inside the truncated velocity domain. As the
velocity grid points, we consider Gauss-Legendre quadrature nodes. We discretize
the space domain with N, = 103 uniform cells and consider a constant time-step
of At = 0.5 x Az/7. To arrive at these discretization parameters, we performed a
convergence study that consisted of the following steps. (i) With the velocity and
the temperature field taken from the initial data, estimate §nax/min using the relation
in (2.20). For the present test case, this provides &max = 3.5 and &min = —3.5. (i)
Fix N, at 10® and At to 0.5 X Ax/&nax. (iii) Choose N = 50 and increase it to
350 in steps of 50. (iv) Terminate the refinement as soon as the relative change in
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mass, momentum and energy between two subsequent refinement cycles drops below
a tolerance of 107°. (v) If the tolerance is not reached, increase &max by 0.5, decrease
Emin by 0.5 and repeat the process from step-(ii). Note that if the refinement cycle
does not terminate then one should increase the value of N, and repeat the entire
process. For the all the test cases mentioned earlier, the value of N, = 10° was
sufficiently large to terminate the refinement cycle.

5.2.2 Convergence study We are interested in the relative L2 error in the
different macroscopic quantities that we define as

| (Peons(far,n, (5t =T,-) = fovam (5t =T,-))) v 22 (:r3)

5.6)  Econs(M, Ny) :=
( ) cons( ac) ||<PconstVM('a t= T7 )>N HL2(9§R3)

Above, Pons and far,n, are as defined in (2.13) and (3.4), respectively. We keep the
value of N fixed at 30.

We first consider Kn = 0.1. We increase M from 3 to 10 in steps of 1 and N,
from 200 to 10% in steps of 200. We choose At = 0.5 x Az/7. Figure 2a shows
the error Eqons(M, N;) for the different values of M and N,. Fixing N, at a small
value—200 for instance—and increasing M does not reduce the error. This is be-
cause for small values of N,, the error is dominated by the error in our space-time
discretization. Furthermore, for a small value of M, increasing N, beyond a certain
limit does not decrease the error. On the other hand, choosing a large value of N,—
103 for instance—and increasing M, or increasing both M and N, simultaneously,
reduces the error. Note that similar to the previous test case, the error decay is not
monotonic. Our results suggest that to balance the accuracy with the computational
cost, an adaptive choice of M and an adaptive spatial grid is desirable. We plan to
develop such an adaptive framework in the future—see [2] for an adaptive moment
method. Let us also mention that at N, = 10° and M = 10, we attain a minimum
relative error of 2.4 x 1072. We find this error value acceptable, given that M = 10
is less than 10% of the velocity grid points used in our reference DVM.

We now consider Kn = 0.01. We choose M and N, as before. Figure 2a shows the
error Eeons (M, N,) for the different values of M and N,. As compared to Kn = 0.1,
the smaller values of M perform much better, which is in accordance with similar
studies conducted in the previous works [36]. For instance, consider the results for
M =4 and N, = 10%. For Kn = 0.1, we find E.ons(4,10%) = 1.3 x 107!, whereas for
Kn = 0.01 we find E.ons(4,103) = 2.5 x 1072, which is almost an order-of-magnitude
better than the result for Kn = 0.1.

Although the lower values of M perform better for Kn = 0.01 than for Kn = 0.1,
the minimum error attained is almost the same for both the Knudsen number—
for Kn = 0.01 the minimum error is 2.3 x 1073, which is 0.95 times that of the
minimum error for Kn = 0.1. This is because for Kn = 0.01, the error at IV, = 103 is
already dominated by the error in our spatial discretization and we see almost no error
reduction upon increasing M from 7 to 10. By increasing N, from 102 to 1.5 x 103,
we could remove this error stagnation and for M = 10, achieve an error of 1.2 x 1073,

5.2.3 Sub-shocks Shock speeds that are faster than the characteristic speeds
in a moment system result in sub-shocks—we refer to [34] for an exhaustive study
of sub-shocks for the Grad’s MOM. Similar to the Grad’s MOM, the pos-L2-MOM
shows sub-shocks-type structures—see the density profile shown in Figure 3. These
structures have a staircase-type shape, and increasing M from 3 to 5 has a smoothing
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Econs(M. N;)

Fig. 2: Results for test case-2. Convergence of the relative error with N, and M.
Computations performed using the pos-L2-MOM. (a) Kn = 0.1 and (b) Kn = 0.01.
The z-axis on both the plots is on a log-scale.

effect that reduces the staircase effect. To conclude that these structures are indeed
sub-shocks, one needs to study the characteristic speeds of the moment system given
in (2.18). Note that these sub-shocks can be removed by introducing second-order
spatial derivatives in the moment equations via regularization—see the discussion on
the regularized-13 moment equations [39].

- M=3
-------- M=5
—DVM |

]0.8 -6.6 -6.4 -6.2 6 02 04 06 08
Fig. 3: Results for test case-2. Density profile for Kn = 0.1 and at ¢t = T. Computa-
tions performed with N, = 10? grid-cells.

5.3 Test case-3 As before, we construct a reference solution using the DVM.
The convergence study discussed in Subsection 5.2.1 lead to N, = 102, £pax = 5,
Emin = —H and N = 350. For the pos-L2-MOM, we fix N = 30 and N, = 103,
and study the results for two different values of M, M =5 and M = 7. We choose
At = 0.5Ax/€max. The convergence behaviour is similar to the previous test case and

This manuscript is for review purposes only.



825
826
827
828
829
830
831
832
833
834
835

836

POSITIVE L2-MINIMIZATION MOMENT METHOD 23

not discussed for brevity.

For Kn = 0.1 and M = 5, Figure 4a compares the density and the velocity
computed using the DVM and the pos-L2-MOM. The results for temperature are
similar and are not shown for brevity. The pos-L2-MOM performs well and results in
an error of Eeons(5,10%) = 6.8 x 1072, Furthermore, increasing the value of M from 5
to 7 improves the results and the error reduces to Econs(7,103) = 2.5x1072—Figure 4b
shows the result for M = 7. Reducing the Knudsen number to 0.01, improves the
results for both M = 5 and M = 7—see Figure 4c and Figure 4d. For both the values
of M, we obtained an error of E.ons(5/7,10%) = 9 x 1073, which is approximately
1/3 of the error for Kn = 0.1. Note that similar to the previous test case, the error
for Kn = 0.01 is dominated by the error in the space-time discretization. Therefore,
increasing M from 5 to 7 does not offer any improvement.

1.7 1 1.7 S T
- = p (pos-L2-MOM) N - = p (pos-L2-MOM)
(DVM) kY \ (DVM)
16 wereenes v (pOs-L2-MOM) 16 kS wereenes v (pOs-L2-MOM)
—-=-v (DVM) —-=-v (DVM)
157 105 157 105
"Q 1.4+ & "Q 14+
N o L1 1o
213¢ E EB13f
QU = QU
121 121
1-0.5 1-0.5
11+ 11+
1 -1 1 -1
-2 -1 0 1 2 -2 -1 0 1 2
xT xT
(a) M =5,Kn=0.1 (b) M =7,Kn=0.1
1.6 —————— ——y : 1 1.6 —————— —— ! 1
i = = p (pos-L2-MOM) ‘3 = = p (pos-L2-MOM)
1 —p (DVM) i —p (DVM)
15} ! . 15 i (
) (DV [ ) (DV
105 i 105
1.4 1.4
& 5 &
Uis e ————— N o ! Lis N ~ 10
g \ g3 \
QU = QU
1.2 1.2
-0.5 -0.5
11} J \\ 1.1} J k
1 : -1 1 : -1
-2 -1 0 1 2 -2 -1 0 1 2
xr xr
(¢) M =5, Kn=0.01 (d) M =7,Kn=0.01

Fig. 4: Results for test case-3. Density and velocity profiles for different values of
M and different Knudsen numbers. The left and the right y-axis is for density and
velocity, respectively.
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5.4 Test case-4 Under the limited computational resources, we were unable
to compute a highly-refined reference solution in multi-dimensions. For this reason,
we refrain from performing a convergence study for the present test case. Rather,
we compare our moment method to a sufficiently refined DVM and showcase an
improvement in the moment solution by increasing M. For both the DVM and the
moment method, we consider tensorized Gauss-Legendre quadrature points with N =
40 quadrature points in each direction. We place these quadrature points inside
Qf = [gminagmax] X [gminagmax} with gmax = 7 and gmin = —7. We discretize the
spatial domain with 150 x 150 uniform elements with grid-size Az = 1.3 x 1072. We
consider a constant time-step of A = Az/(4 X Emax)-

As time progresses, the density disperses into the spatial domain. This is made
clear by Figure 5a that shows the density profile at ¢ = T computed using the DVM.
At the same time-instance, Figure 5b and Figure 5¢ show the density profile at t =T
computed using the pos-L2-MOM with M = 3 and M = 5, respectively. As expected,
both the density profiles are positive. Furthermore, the moment solution appears
to improve upon increasing the value of M. The improvement is quantified by the
decrease in the relative L2-error in density shown in Table 1.

The dispersion of the micro-bubble triggers a flow velocity and a temperature
gradient. Figure 6 compares the x; velocity component and the temperature along a
cross-section of the spatial domain computed using the pos-L2-MOM and the DVM.
The results for the z2 velocity component are similar and are not shown for brevity.
As expected, similar to density, the results for both the velocity and the temperature
appear to improve as M is increased from 3 to 5, the relative L2-error shown in
Table 1 indicates the same. We note that, as compared to the previous test cases, the
moment method performs better for the present test case. A possible reason for this
could be that our DVM solution is not as refined as for the previous test cases—the
previous test cases consider a 1D velocity grid of 350 points whereas the present test
case considers a tensorized grid of 40 x 40 points.

M P V1 U2 0
3 [16x103[2x107f[21x10t]28x103
5 [53x10°%[5%x102[48%x10°2 [ 54x 104

Table 1: Results for test case-4. Relative L?(2)-error in different macroscopic quan-
tities at ¢ =T and Kn = 0.1.

6 Conclusions We proposed a positive moment method for the Boltzmann-
BGK equation based upon L2-minimization. We showed that on a space-time dis-
crete level both the feasibility of the minimization problem and the stability of the
moment approximation can be ensured via a CFL-type condition. Our proof of booth
these properties relied on relating our moment method to a discrete-velocity-method.
Through a entropy-minimization based discretization of the collision operator, we en-
sured that our moment approximation conserves mass, momentum and energy. We
also extended our method to a multi-dimensional space-velocity domain. With the
help of numerical experiments, we studied the accuracy of our method for both single
and multi-dimensional space-velocity domains. Our method performed well for a
broad range of problems involving strong shocks, beam interaction and micro-bubble
dispersion. Furthermore, it retained accuracy for a broad range of Knudsen numbers.
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p(z,y,t=T)

(a) DVM, Kn = 0.1 (b) M =3,Kn=0.1

(¢) M =5,Kn=0.1

Fig. 5: Results for test case-4. Density profiles at t =T
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