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Abstract. We consider the method-of-moments approach to solve the Boltzmann equation of4
rarefied gas dynamics, which results in the following moment-closure problem. Given a set of mo-5
ments, find the underlying probability density function. The moment-closure problem has infinitely6
many solutions and requires an additional optimality criterion to single-out a unique solution. Mo-7
tivated from a discontinuous Galerkin velocity discretization, we consider an optimality criterion8
based upon L2-minimization. To ensure a positive solution to the moment-closure problem, we9
enforce positivity constraints on L2-minimization. This results in a quadratic optimization prob-10
lem with moments and positivity constraints. We show that a (Courant-Friedrichs-Lewy) CFL-type11
condition ensures both the feasibility of the optimization problem and the L2-stability of the space-12
time discrete moment approximation. We provide an extension of our method to multi-dimensional13
space-velocity domains and perform several numerical experiments to showcase its accuracy.14

1 Introduction Due to modeling assumptions, the Euler and the Navier-15
Stokes equations become inaccurate as a flow deviates significantly from a thermo-16
dynamic equilibrium. This motivates one to consider mathematical models that can17
approximate flows in all regimes of thermodynamic non-equilibrium. One such model18
is the Boltzmann equation (BE) that govern the evolution of a probability density19
function (pdf) f(x, t, ξ) ∈ R+ and reads20

L(f) = 0 where L := ∂t + ξ · ∇ −Q.(1.1)2122

Above, ξ ∈ Rdξ is the molecular velocity with 1 ≤ dξ ≤ 3 being the velocity-dimension,23
D := [0, T ] is the temporal domain with T > 0 being the final time, and∇ represents a24
gradient in the spatial domain Ω ⊆ Rd with 1 ≤ d ≤ 3 being the space-dimension. The25
BE signifies the fact that the pdf changes due to the free-streaming of the gas molecules26
and the inter-molecular collisions—the collision operator Q models the inter-particle27
collisions, and the transport operator ∂t + ξ · ∇ models the free-streaming of the gas28
molecules.29

In practical applications, one is not interested in the fine details of a pdf but in the30
macroscopic quantities like density, velocity, temperature, etc. These quantities can31
be recovered by taking the velocity-moments of the pdf. This motivates the method-32
of-moments (MOM) approach, where, rather than directly solving the BE, we solve for33
a finite number of moments of the pdf. The velocity-moments of the BE provide the34
governing equation for the moments of f(x, t, ·), or the so-called moment equations.35
However, a finite set of moment equations is not closed—the flux term (ξ ·∇f) results36
in a moment of degree higher than that included in the moment set. Nevertheless, one37
can close the moment equations by solving the following moment-closure problem.38

Moment-closure problem: given a set of moments, find the underlying pdf.(1.2)3940

There are infinitely many solutions to the moment-closure problem [21]. To single-41
out a unique solution, one can introduce an optimality criterion by minimizing a42
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2 N. SARNA

strictly convex functional of the pdf. We choose this functional to be the L2-norm of43
the pdf. Our choice is motivated by a discontinuous Galerkin (DG) discretization of44
the velocity domain that we interpret as an L2-minimization problem with moment45
constraints—later sections provide further clarification.46

A major drawback of L2-minimization (and so of a DG-discretization [3]) is that it47
does not penalize the negativity of a solution—for the same reason, a Hermite spectral48
method proposed in [15] does not ensure positivity. This is undesirable given that we49
are approximating a pdf that is positive by definition. There is ample numerical and50
theoretical evidence supporting the claim that a positive solution to a moment-closure51
problem better approximates a pdf—see the different works on positive moment-52
methods [1, 8, 10, 18, 20, 22, 30, 37]. Furthermore, in theory, a negative solution to a53
moment-closure problem can result in a negative density and temperature, resulting54
in a breakdown of the solution algorithm. For this reason, we enforce positivity55
constraints on our L2-minimization problem. This results in a quadratic optimization56
problem with moments and positivity constraints.57

For the robustness of the algorithm, the feasibility of the quadratic optimization58
problem is imperative. We show that a CFL-type condition ensures (i) the feasibility59
of the optimization problem and (ii) the L2-stability of the moment approximation—60
we insist that stability is crucial in analyzing the convergence of a moment approx-61
imation [24, 26]. A proof for both these properties hinges on relating our moment62
approximation to a discrete-velocity-method (DVM). We emphasize that our proof is63
general in the sense that it is independent of the objective functional being minimized64
to single-out a unique solution to the moment-closure problem.65

Other than L2-minimization (with positivity constraints) one can consider entropy-66
minimization. Despite the many favourable properties (see [16, 19, 20, 29, 31]), it is67
challenging to compute an entropy-minimization based closure. A few reasons for this68
are as follows. Firstly, to perform entropy-minimization one usually performs Newton69
iterations where in every iteration one inverts the Hessian of the objective functional.70
This Hessian (despite the adaptivity of basis proposed in [5]) can become severely71
ill-conditioned—particularly inside shocks and for large moment sets—leading to a72
slow (or no) convergence of the Newton solver [29, 30]. Secondly, in every Newton73
iteration, one needs to compute integrals over the dξ-dimensional velocity domain.74
An analytical expression for these integrals is usually unavailable and one seeks a75
numerical approximation via some quadrature routine. The number of these quad-76
rature points can grow drastically with dξ, making the solution algorithm expensive77
for multi-dimensional applications [8, 29, 30]. For instance, the number of tensorized78
Gauss-Legendre quadrature points grow as O(Ndξ), where N is the number of quad-79
rature points in one direction.80

Replacing entropy minimization by L2-minimization (with positivity constraints)81
does not necessarily solves the two problems mentioned above. We use the interior-82
convex-set algorithm to perform L2-minimization and even for problems with strong83
shocks and large moment sets, we did not encounter issues with the conditioning of84
the Hessian. Our results suggest that L2-minimization could be an alternative to85
entropy-minimization for flow regimes where entropy-minimization losses robustness.86
Furthermore, since L2-minimization is robust for large moment sets, it is appealing for87
an adaptive approach where depending upon the accuracy requirements, the moment88
set can change locally in the space-time domain [2, 38].89

We note that although our L2-minimization procedure is robust, to approximate90
the integrals, we use tensorized Gauss-Legendre quadrature points in the velocity91
domain, which, we expect, makes L2-minimization expensive. Specialized quadrature92
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POSITIVE L2-MINIMIZATION MOMENT METHOD 3

points can make both L2 and entropy minimization efficient [8]. However, these93
quadrature points do not guarantee the feasibility of the minimization problem—a94
property we consider crucial for the robustness of the solution algorithm. To tackle95
infeasible problems, one can try regularizing the minimization problem by relaxing96
the moment constraints [4]. The use of a specialized quadrature with a regularized97
minimization problem is an interesting direction to pursue and we plan to consider it98
in the future.99

We acknowledge that our work draws inspiration from the positive PN closure100
proposed in [18] for the radiative transport equation. Indeed, we solve a similar101
optimization problem as that solved by the positive PN closure. Nevertheless, our102
work differs from [18] in the following ways. Firstly, unlike the linear isotropic colli-103
sion operator considered in [18], we consider the non-linear Boltzmann-BGK operator104
that we discretize using entropy-minimization to ensure mass, momentum and energy105
conservation. Secondly, using the solution of the optimization problem, to close the106
moment system, authors in [18] perform a spherical harmonics based velocity recon-107
struction of the pdf. Our framework suggests that such a reconstruction is not needed108
if one uses the same quadrature points to compute moments in the moment equations109
and to solve the minimization problem. Thirdly, through numerical experiments, we110
study the convergence of our moment approximation and compare it to the DVM.111
These studies were not performed in [18]. Lastly, we establish robust (under van-112
ishing Knudsen limit) L2-stability estimates for our moment approximation. Let us113
emphasize that to the best of our knowledge, for gas transport applications, none of114
the previous works consider L2-minimization based moment-closures with positivity115
constraints.116

We have organized the rest of the article as follows. In Section 2 we discuss117
our moment approximation and the details of the BE. In Section 3 we discuss the118
space-time discretization of the moment equations, the feasibility of the optimization119
problem, and the stability of the moment approximation. In Section 4 we extend120
our framework to multi-dimensional problems, and in Section 5 we perform numerical121
experiments.122

2 Moment Approximation Throughout this section we consider a one di-123
mensional space-velocity domain i.e., d = dξ = 1 in (1.1). An extension to multi-124
dimensions is straightforward and is discussed in Section 4. We start by discussing a125
positive L2-minimization based moment-closure and use it later to define a moment126
approximation for the BE.127

2.1 A positive L2-method-of-moments (pos-L2-MOM) Consider a m-th128
order polynomial in ξ given as pm(ξ) := ξm. Collect all the different pm(ξ) upto some129
order (M − 1) ∈ N in a vector PM (ξ) given as130

PM (ξ) := (p0(ξ), . . . , pM−1(ξ))T ,(2.1)131132

where (·)T represents the transpose of a vector. For a function ξ 7→ g(ξ) ∈ R, we133
introduce the shorthand notation134

〈g〉 :=
∫
R
g(ξ)dξ.(2.2)135

136

Note that the definition of PM implies that the vector 〈PMg〉 contains the first M137
moments of g.138
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4 N. SARNA

For some moment vector λ ∈ RM , consider the mathematical formulation of the139
moment-closure problem described earlier in the introduction140

Find gM : 〈PMgM 〉 = λ.(2.3)141142

Even for a realizable moment vector λ (i.e., there exists a g∗ > 0 such that λ =143
〈PMg∗〉), the above problem can have infinitely many solutions [21]. To single-out144
a unique solution, we use L2-minimization as an optimality criterion. Since L2-145
minimization does not penalize negativity and since we prefer a positive solution146
to the moment-closure problem, we explicitly enforce a positivity constraint. This147
result in an optimization problem given as148

gM := arg min
g∗∈L2(R)

1
2‖g

∗‖2L2(R) : 〈PMg∗〉 = λ, g∗ > 0.(2.4)149
150

In the above minimization problem, as yet, it is unclear how to enforce the pos-151
itivity constraint almost everywhere on R. To tackle this problem, we consider the152
following two steps—we refer to [18, 29, 30] for similar steps related to the minimum-153
entropy closure and the positive PN closure.154

1. Truncate the velocity domain: We truncate the velocity domain R to Ωξ :=155
[ξmin, ξmax]. A decent estimate for ξmax/min follows from the velocity and the156
temperature field of the gas and is discussed later in Subsection 2.4. The157
same sub-section discusses the pros and cons associated with truncating the158
velocity domain.159

2. Positivity constraints on quadrature points: To perform the integrals in the160
minimization problem, we use some quadrature points defined over Ωξ. We161
enforce the positivity constraints only over these quadrature points. Although162
our framework is valid for any set of space-time-independent quadrature163
points, for completeness, we consider N Gauss-Legendre quadrature points164
and we denote their weights and abscissas by {ωi}i and {ξi}i, respectively.165
Using the quadrature points, for some function ξ 7→ g(ξ) ∈ R, we define166

〈g〉 ≈ 〈g〉N :=
N∑
i=1

ωig(ξi).(2.5)167
168

For convenience, with W (g) ∈ RN we represent a vector that collects all the169
values of g at the quadrature points i.e.,170

(W (g))i := g(ξi), ∀i ∈ {1, . . . , N}.(2.6)171172

With the above two simplifications, the optimization problem in (2.4) transforms173
to an optimization problem for W (gM ) given as174

W (gM ) = arg min
W∗∈RN

1
2‖W

∗‖2l2 : ALW ∗ = λ, W ∗ > 0.(2.7)175
176

To write down the moment constraint (the underlined term) in the above problem,177
we have used the relation178

〈PMg∗〉 ≈ 〈PMg∗〉N = ALW (g∗),(2.8)179180
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POSITIVE L2-MINIMIZATION MOMENT METHOD 5

where the matrices A ∈ RM×N and L ∈ RN×N are given as181

A := (PM (ξ1), . . . , PM (ξN )) , Lij =
{
ωi, i = j

0, i 6= j
.(2.9)182

183

Thus, L is a diagonal matrix containing the quadrature weights {ωi} at its diagonal,184
and A is a Vandermonde matrix. Note that in (2.7), for notational simplicity, we185
defined W ∗ = W (g∗).186

Remark 1 (A DG discretization). To see the similarity between the pos-L2-187
MOM and a DG velocity space discretization and understand our motivation behind188
considering L2-minimization, consider the optimization problem189

gDGM := arg min
g∗∈L2(Ωξ)

1
2‖g

∗‖2L2(Ωξ) :
∫

Ωξ
PMg

∗dξ = λ.190
191

The above problem is a continuous-in-velocity analogue of (2.4) but without positivity
constraints. Using the first order-optimality conditions, one can conclude that a solu-
tion to the above problem is given as (see page-2611 of [18] for a proof related to the
PN closure)

gDGM = αTPM ,

where α is a vector of expansion coefficients related linearly to the moment vector192
λ—the exact form of α is not important here. The above expansion is the same as193
the DG velocity discretization proposed in [3]. Thus, one can interpret pos-L2-MOM194
as a DG velocity discretization with positivity constraints. Note that the optimization195
problem corresponding to gDGM does not penalize the negativity of a solution therefore,196
gDGM is not necessarily positive on the quadrature points.197

Remark 2 (A Hermite expansion). One can also interpret a Hermite approxima-198
tion to a pdf as a solution to a weighted L2-minimization problem—we refer to [15, 43]199
for an exhaustive discussion on Hermite expansions. Let pm(ξ) denote the m-th order200
Hermite polynomial Hem(ξ). Normalize the Hermite polynomials such that they are201
orthogonal under the inner-product of the weighted L2-space L2(R, exp(−ξ2/2)). Let202
PM be as defined in (2.1). Note that instead of monomials, the vector PM (ξ) now203
contains Hermite polynomials.204

Consider a weighted L2-minimization problem given as205

gHM := arg min
g∗∈L2(R,exp(ξ2/2))

1
2‖g

∗‖2L2(R,exp(ξ2/2)) : 〈PMg∗〉 = λ.206
207

Note that as compared to a DG approximation, in the above optimization problem, we
did not truncate the velocity domain. One can show that the solution to the above
minimization problem is given as

gHM = λTPM exp(−ξ2/2),

which is similar to the Hermite spectral method proposed in [15]. Using the same208
methodology as for the L2-minimization, one can impose positivity constraints in the209
above minimization problem and enforce them on a set of Gauss-Hermite quadra-210
ture points. We leave the development of a positive weighted L2-minimization based211
moment method as a part of our future work.212
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2.1.1 Feasibility of the positive L2-minimization If there exists a z > 0213
such that λ = ALz then the optimization problem in (2.7) is feasible with the feasible214
point W ∗ = z. We collect this simple, but noteworthy, result as follows. We first215
define a set of realizable moments216

R := {λ : λ ∈ RM , λ = ALz, z > 0}.(2.10)217218

Using R, we collect our statement related to the feasibility of the optimization prob-219
lem.220

Lemma 2.1 (Feasibility of the optimization problem). The optimization problem221
in (2.7) is feasible if λ ∈ R.222

Note that for a given λ ∈ R, the number of feasible points of the optimization
problem vary depending upon the value of N relative to M . Let z > 0 be such that
λ = ALz. A feasible point W ∗ of the optimization problem (2.7) is a positive solution
of the linear system

ALW ∗ = ALz.

Since AL is a full-rank matrix (A is a Vandermonde matrix and the Gauss-Legendre223
quadrature weights are positive), the above linear system has a unique solution W ∗ =224
z for N ≤M . Thus, the optimization problem has a single feasible point for N ≤M .225
In contrast, the above linear system has infinitely many positive solutions for N > M ,226
resulting in infinitely many feasible points.1227

The above discussion indicates that for N ≤ M , we do not need to perform L2-228
minimization. A unique positive W (gM ) can be recovered by solving the moment229
constraint ALW (gM ) = λ. However, for N ≤ M , a moment-based approach is230
meaningless because we can directly compute W (gM ) using a discrete-velocity-method231
(DVM). Since N ≤ M , this would be less expensive than first computing λ and232
then computing W (gM ) using the optimization problem. Therefore, in the following233
discussion we only consider N > M . The discussion here becomes clearer when we234
later relate our moment approximation to a DVM.235

Remark 3 (Practical considerations while choosing N). Practical considera-236
tions suggest a compromise between small and large values of N . We use an inter-237
convex-set algorithm to solve the minimization problem in (2.7). A crude estimate238
for the complexity of this algorithm is O(N3) [42]. Thus, choosing a large value of239
N increases the computational cost of solving the optimization problem, which, as we240
discuss later, is the most expensive part of our moment approximation. On the con-241
trary, we do not want N to be so small that the error (measured in some norm) in242
our moment approximation is dominated by the error in our quadrature approxima-243
tion. Numerical experiments suggest that choosing N between 2M and 5M is a good244
compromise between accuracy and efficiency.245

2.2 The Boltzmann Equation (BE) Equipping the BE with initial and246
boundary data provides247

(2.11)
L(f) = 0 on Ω×D × R, f(·, t = 0, ·) = f0 on Ω× R,

f = fin on ∂Ω− ×D.
248

1Let W ∗ be a solution to ALW ∗ = ALz. Let v be an element of the null-space of AL—since AL
is a flat matrix, its null-space is non-empty. Then, for all β such that mini(βvi) > − mini(wi), we
find that W ∗ + βv is also a feasible point.
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Above, the spatial domain is given as Ω := [xmin, xmax], and ∂Ω− is the inflow part249
of the boundary that reads250

∂Ω− := {(x, ξ) : ξ · n(x) ≤ 0, x ∈ ∂Ω},(2.12)251252

where n(x) is a unit normal at x ∈ ∂Ω that points out of the domain. For simplicity,253
we consider only inflow type boundary conditions and not wall boundary conditions254
i.e., fin is the given data and is independent of the solution f [12]. An inflow type255
boundary simplifies our result related to the stability of the moment approximation256
discussed later. With some additional technical details, one can extend our stability257
result to solid-wall boundaries—see [28] for stability results related to a solid-wall258
boundary for a Grad’s moment method.259

We normalise f such that the density ρ, the velocity v and the temperature θ (in260
energy units) reads261  ρ(x, t)

ρ(x, t)v(x, t)
ρ(x, t)

(
θ(x, t) + v(x, t)2)

 := 〈Pconsf(x, t, ·)〉 , Pcons(ξ) :=

 1
ξ
ξ2

 .(2.13)262

263

Note that for M ≥ 3, Pcons(ξ) is nothing but the first three entries of PM (ξ).264
We consider a Boltzmann-BGK collision operator given as265

Q(f(x, t, ξ)) := 1
τ(x, t) (fM(x, t, ξ)− f(x, t, ξ)),(2.14)266

267

where the collision frequency τ(x, t)−1 reads τ(x, t)−1 := Cρ(x, t)θ(x, t)1−ω with ω268
begin the exponent in the viscosity law of the gas [13]. The collision operator rep-269
resents the fact that the pdf f(x, t, ·) is pushed towards the Maxwell-Boltzmann pdf270
fM(x, t, ·) given as271

fM(x, t, ξ) := ρ(x, t)√
2πθ(x, t)

exp
(
− (ξ − v(x, t))2

2θ(x, t)

)
.(2.15)272

273

We can also interpret fM as a solution to an entropy-minimization problem. Out274
of all the pdfs that have the same mass, momentum and energy as f(x, t, ·), the pdf275
fM(x, t, ·) is the one that minimizes the Boltzmann’s entropy. Equivalently,276

fM(x, t, ·) = arg min
f∗(ξ)≥0

{〈f∗ log(f∗)〉 : 〈Pconsf
∗〉 = 〈Pconsf(x, t, ·)〉} .(2.16)277

278

Later, we use the above interpretation of fM to discretize it on a velocity grid. A279
noteworthy property of Q(f) is its collision invariance i.e., 〈PconsQ(f)〉 = 0 for all f in280
the domain of Q. This ensures that the BE conserves mass, momentum and energy.281
By considering M ≥ 3, which ensures that Pcons(ξ) is contained in the vector PM (ξ),282
and by carefully discretizing the collision operator as in [22], we will ensure that our283
moment system also conserves these quantities.284

2.3 Moment equations We present a moment approximation to the BE based285
upon the pos-L2-MOM described in Subsection 2.1. To derive a governing equation286
for the moments 〈PMf(x, t, ·)〉, we take (discrete) velocity moments of the BE given287
in (2.11) to find288

∂t 〈PMf(x, t, ·)〉N + ∂x〈PMξf(x, t, ·)〉N = 〈PMQ(f(x, t, ·))〉N .(2.17)289290
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Recall that 〈·〉N is as defined in (2.5) and is a numerical approximation to the integral291
〈·〉.292

The above system of equations is not closed—the underlined flux-term contains a293
M -order moment that is not contained in the moment vector 〈PMf(x, t, ·)〉N . To close294
the system of equations, using the moments 〈PMf(x, t, ·)〉N , we need to approximate295
the values of f(x, t, ·) at the quadrature points i.e., we need to approximate the vector296
W (f(x, t, ·)) using the moments 〈PMf(x, t, ·)〉N . We approximate W (f(x, t, ·)) by297
W (fM (x, t, ·)). To compute W (fM (x, t, ·)), we use the L2-minimization problem given298
in (2.7) with the moment vector λ set to 〈PMf(x, t, ·)〉N . This results in the following299
closed set of moment equations300

(2.18)
∂t 〈PMfM 〉N + ∂x 〈PMξfM 〉N = 1

τ
(〈PMfM,N 〉N − 〈PMfM 〉N ) on Ω×D,

〈PMfM (t = 0)〉N = 〈PMf0〉N on Ω.
301

Our space-time discretization Subsection 3.2 will discuss the boundary discretization.302
Let us emphasis again that to compute the flux term 〈PMξfM (x, t, ·)〉N , we only need303
the value of W (fM (x, t, ·)), which are available after solving the L2-minimization304
problem.305

The pdf fM,N is an approximation to the Maxwell-Boltzmann pdf fM and is such306
that W (fM,N ) is a solution to an entropy-minimization problem given as [22]307

W (fM,N (x, t, ·)) = arg min
W∗∈RN>0

{∑
i

w∗i log(w∗i )ωi : AconsLW
∗ = 〈PconsfM (x, t, ·)〉N

}
.

(2.19)

308
309

The above problem is a discrete-in-velocity analogue of the entropy minimization310
problem given in (2.16). Furthermore, the moment constraints in the minimization311
problem ensure that the moment system (2.18) conserves mass, momentum and en-312
ergy.313

2.4 Computing the velocity cut-off Recall that we truncate the velocity314
domain R to Ωξ = [ξmin, ξmax]. We use the same technique as a DVM to compute the315
velocity cut-off ξmax/min. The technique is summarised as follows—for further details,316
we refer to [7, 22] and the references therein. Estimating ξmax/min using the velocity317
and the temperature of the gas provides318

(2.20)
ξmin := inf

(x,t)∈Ω×D

(
v(x, t)− c

√
θ(x, t)

)
,

ξmax := sup
(x,t)∈Ω×D

(
v(x, t) + c

√
θ(x, t)

)
.

319

From arguments in statistical mechanics, a value of c between 3 and 4 is desirable.320
Choosing c = 3.5 balances accuracy and computational cost. During numerical ex-321
periments, we compute a reference solution using a DVM. To ensure that the DVM322
solution is sufficiently refined, we perform a convergence study by first estimating323
ξmax/min using the initial data and the above formulae and then increasing ξmax (and324
decreasing ξmin) till the relative error between two subsequent refinements drops be-325
low an acceptable value. We use ξmax from the last refinement cycle for both the326
DVM and the pos-L2-MOM—Section 5 provides further details. In practical appli-327
cations, one can estimate v(x, t) and θ(x, t) using a Navier-Stokes solver, which is328
usually much cheaper than a BE solver [7].329
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Remark 4 (Pros and cons of a space-time-independent ξmax). Our choice of ξmax330
(and ξmin) is space-time-independent, which has both positive and negative conse-331
quences. Such a velocity cut-off can be accurate only if, on the entire space-time332
domain, f(x, t, ·) is sufficiently small outside of Ωξ. In terms of the macroscopic quan-333
tities, we can expect to be accurate only for flows with a velocity and a temperature334
inside a certain range [22]. Let us mention that we share these negative consequences335
of truncating a velocity domain with the DVM and the entropy-minimization based clo-336
sures [22, 30]. On the positive side, as we discuss later, with a space-time-independent337
ξmax it is straightforward to ensure the feasibility of the optimization problem in (2.7).338
Furthermore, the stability of the moment equations that we establish later can also be339
attributed to ξmax being fixed in space-time.340

Remark 5 (A space-time-dependent ξmax). To overcome the limitations men-341
tioned in the previous remark, similar to [9], one can introduce space-time-dependence342
in ξmax. We failed to introduce this dependence without sacrificing the feasibility of the343
optimization problem (2.7) and the stability result discussed later. To overcome the344
feasibility issue, one can try modifying the optimization problem by regularizing it [4].345
The regularization adds the moment constraint as a penalty term and tries to mini-346
mize both the L2-norm of the pdf and the error in satisfying the moment constraint.347
As for the stability, it is unclear how one can ensure it with a space-time-dependent348
ξmax. We leave the development of pos-L2-MOM with space-time adaptive ξmax as a349
part of our future work.350

3 Space-time discretization351

3.1 Preliminaries We partition Ω = [xmin, xmax] into Nx intervals given as352

Ω =
Nx⋃
i=1
Ii, Ii = [xi−1/2, xi+1/2],(3.1)353

354

where x1/2 = xmin and xNx+1/2 = xmax. With {ti}i=1,...,K ⊂ D we represent a set of355
discrete time instances such that 0 = t1 < t2 · · · < tK = T . For simplicity of notation,356
we assume that all the space and the time intervals are of the same size ∆x and ∆t,357
respectively. An extension to non-uniform space-time grids is straightforward. We358
denote the finite volume (FV) approximation of 〈PMfM (x, t, ·)〉 and 〈PMfM,N (x, t, ·)〉359
in the i-th cell and at the k-th time instance by360

(3.2)

〈
PMf

k
i

〉
N
≈ 1

∆x

∫
Ii
〈PMfM (x, tk, ·)〉N dx,〈

PMf
k
M,i

〉
N
≈ 1

∆x

∫
Ii
〈PMfM,N (x, tk, ·)〉N dx.

361

Above, fM,N is the discretization of the Maxwell-Boltzmann distribution introduced362
in (2.16) and for notational simplicity, we have suppressed the M dependence in fki .363

Using the matrix A and L given in (2.9), we can express the space-time discrete364
moments in a matrix-vector product form as365

(3.3)
〈
PMf

k
i

〉
N

= ALW (fki ),
〈
PMf

k
M,i

〉
= ALW (fkM,i),366

where W (fki ) and W (fkM,i) are the FV-approximations to W (fM (x, tk, ·)) and367
W (fM(x, tk, ·)), respectively, in the i-th cell and at the k-th time step. For later368
convenience, with fM,Nx we represent an FV approximation to fM defined as369

fM,Nx(x, tk, ξ) = fki (ξ), ∀x ∈ Ii, k ∈ {1, . . . ,K}, ξ ∈ {ξi}i.(3.4)370371
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10 N. SARNA

3.2 Evolution scheme The evolution scheme consists of four steps outlined372
below. We present these steps for some representative t = tk. Each step is repeated373
from k = 1 to k = K − 1. For k = 1, we initialize with374 〈

PMf
k
i

〉
N

= 1
∆x

∫
Ii
〈PMf0(x, ·)〉N dx, ∀i ∈ {1, . . . , Nx},(3.5)375

376

where f0 is the initial data in (2.11). We approximate the above space integral with377
10 Gauss-Legendre quadrature points in each cell.378

1. Entropy-minimization step: Using the conserved moments {
〈
Pconsf

k
i

〉
N
}i,379

solve the entropy minimization problem in (2.19). This provides the discrete380
Maxwell-Boltzmann pdf {fkM,i}i.381

2. Collision step: With the output of the previous step, perform collisions with382
an implicit Euler time-stepping scheme. At some intermediate tk∗ ∈ (tk, tk+1)383
and for all i ∈ {1, . . . , Nx}, this provides [14]384 〈

PMf
k∗

i

〉
N
−
〈
PMf

k
i

〉
N

∆t = 1
τ(xi, tk∗)

(〈
PMf

k∗

M,i

〉
N
−
〈
PMf

k∗

i

〉
N

)
.(3.6)385

386

There is an explicit solution to the above implicit collision step. Since the387
collision step preserves mass, moment and energy and since the solution of the388
entropy-minimization problem (2.19) is unique for a given set of conserved389
moments, we find W (fk∗M,i) = W (fkM,i). This implies that

〈
PMf

k∗

M,i

〉
N

=390 〈
PMf

k
M,i

〉
N

, which provides391

(3.7)

〈
PMf

k∗

i

〉
N

= 1
1 + ∆t/τ(xi, tk∗)

〈
PMf

k
i

〉
N

+ ∆t/τ(xi, tk∗)
1 + ∆t/τ(xi, tk∗)

〈
PMf

k
M,i

〉
N
.

392

3. Optimization step: Using the moments {
〈
PMf

k∗

i

〉
N
}i, compute the weights393

{W (fk∗i )}i by solving the optimization problem in (2.7).394
4. Transport step: Using the output of the previous step, perform the transport395

step given as396

(3.8)

〈
PMf

k+1
i

〉
N
−
〈
PMf

k∗

i

〉
N

∆t = − 1
∆x ( F(W (fk,∗i+1),W (fk,∗i ))

− F(W (fk,∗i ),W (fk,∗i−1))
)
.

397

To impose boundary conditions, for i = 1, set W (fk,∗i−1) = W (fin(t, ·)) and for398

i = Nx, set W (fk,∗i+1) = W (fin,N (t, ·)), where fin is the boundary data given399
in (2.11). Above, F : RN × RN → RM is the numerical flux and since we400
consider a kinetic upwind numerical flux, it reads [1]401

F(W1,W2) := 1
2 (AL(Ξ− |Ξ|)W1 +AL(Ξ + |Ξ|)W2) .(3.9)402

403

Above, A and L are the two matrices defined in (2.9). The matrix Ξ is404
a diagonal matrix with the locations of the quadrature points {ξi}i at its405
diagonal. Furthermore, |Ξ| is a matrix representing the absolute value of Ξ in406
the sense that (|Ξ|)ij = |Ξij |. For clarity, to express F in a standard kinetic407
upwind flux form, note that AL(Ξ± |Ξ|)W1 = 〈PM (ξ ± |ξ|)f1〉N .408
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Remark 6 (Space-time locality of the optimization step). The optimization step409
(and also the entropy minimization step) is a local in space-time operation. We loop410
over each spatial cell, solve the optimization problem, add the local contributions to411
the numerical flux and move over to the next cell. Therefore, at any given point in412
time, we store only the moments in all the spatial cells and not the values of the pdf413
at the quadrature points. This results in a drastic reduction in memory consumption414
since, in practice, the number of quadrature points are much larger than the number415
of moments—see [29, 30] for a similar comment related to a maximum-entropy clo-416
sure. Let us emphasis that in comparison, a DVM stores the values of the pdf at the417
quadrature points in all the cells, which, particularly for multi-dimensional velocity418
domain, results in a memory intensive algorithm [7].419

3.3 Properties of the evolution scheme The entropy-minimization problem420
in (2.19) ensures that our moment approximation conserves mass, moment and energy.421
In addition to being conservative, the following discussion establishes that our space-422
time discrete moment approximation (i) under a CFL-type condition, results in a423
feasible optimization problem; and (ii) is L2 stable in the sense that the L2-energy424 ∑Nx
i=1‖

〈
PMf

k
i

〉
N
‖2l2 has an upper-bound that depends solely on the initial data f0425

and the boundary data fin.426
We start with making the following assumptions on the initial and the boundary427

data. We assume that the first M -moments of f0 and fin belong to the realizability428
set R defined in (2.10) i.e.,429

(3.10) 〈PMfin(x, t, ·)〉N ∈ R, 〈PMf0(x, ·)〉N ∈ R, ∀(x, t) ∈ Ω×D.430

The above assumption will be helpful in establishing the feasibility of the optimization431
problem in the optimization step. For the boundary data, we also assume that432

(3.11)
|fin(·, t, ·)|∂Ω,N<∞, ∀t ∈ D,

where |fin(·, t, ·)|2∂Ω,N :=
∑

ξi·n(x)≤0

∮
∂Ω
|ξi · n(x)|fin(x, t, ξi)2ωids.

433

Above, the unit vector n(x) is as given in (2.12), and {ξi} and {ωi}i are the abscissas434
and the weights of the quadrature points, respectively. Note that the assumption435
on |fin(·, t, ·)|∂Ω,N is a discrete-in-velocity analogue of a standard assumption that436
fin(·, t, ·) ∈ L2(∂Ω−, |ξ · n(x)|)—see [40] for further details. Here, L2(∂Ω−, |ξ · n(x)|)437
represents a L2 space over ∂Ω− with the Lebesgue measure |ξ · n(x)|, and the set438
∂Ω− contains all the incoming velocities and is as defined in (2.12). Intuitively, the439
above assumption states that the total L2-energy flux associated with fin should be440
bounded. We insist that the above assumptions are valid for most applications of441
practical relevance.442

3.4 Feasibility of the optimization problem We show that under a CFL-443
condition, the moments resulting from the collision step and the transport step belong444
to the realizability set R given in (2.10) i.e., both the steps are realizability preserving.445
The feasibility of the optimization problem then follows from Lemma 2.1. The details446
are as follows.447

Our result is a straightforward extension of the proof for the realizability preserv-448
ing space-time discretization of radiative transport equations considered in [6]. Using449
the definition of R given in (2.10), we find450

a1λ1 + a2λ2 ∈ R, ∀a1, a2 ≥ 0, λ1, λ2 ∈ R.(3.12)451452
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12 N. SARNA

We consider the collision step given in (3.7). Suppose that
〈
PMf

k
i

〉
∈ R, which453

implies that entropy-minimization step is well-posed (see [22]) and that
〈
PMf

k
M,i

〉
∈454

R. Then, the above relation implies that for any ∆t, τ(xi, tk) > 0, the collision step455
is realizability preserving i.e., for all i ∈ {1, . . . , Nx}, we have

〈
PMf

k∗

i

〉
∈ R.456

We show that under a CFL-condition, the transport step in (3.8) is also realiz-457
ability preserving. Replacing the numerical flux function from (3.9) in the transport458
step given in (3.8) and re-arranging a few terms provides459

(3.13)

〈
PMf

k+1
i

〉
N

=AL(1− Λ|Ξ|)W (fk
∗

i )

+ Λ
2AL(|Ξ|−Ξ)W (fk

∗

i+1) + Λ
2AL(|Ξ|+Ξ)W (fk

∗

i−1).
460

where Λ := ∆t
∆x . For all i ∈ {1, . . . , Nx}, due to the positivity constraints in the461

optimization problem (2.7), we have W (fk∗i ) > 0, which, for Λ > 0, implies that the462
underlined terms are in R. To ensure that the first term on the right is in R, we463
choose464

0 < Λ ≤ min{|ξ−1
max|, |ξ−1

min|}.(3.14)465466

The above range of Λ, the relation in (3.12) and the assumption on the initial and467
the boundary data (3.10) provides

〈
PMf

k+1
i

〉
N
∈ R. We collect our findings in the468

result below.469

Lemma 3.1. Consider the evolution scheme outlined in Subsection 3.2 and de-470
fine Λ = ∆t/∆x. Assume that the initial and the boundary data satisfies (3.10),471
then the quadratic optimization problem in the evolution scheme is feasible if Λ ∈472
(0,min{|ξ−1

max|, |ξ−1
min|}].473

3.5 L2 stability of the scheme Define the total L2-energy at t = tk+1 as474

Ek+1 :=
Nx∑
i=1
‖
〈
PMf

k+1
i

〉
N
‖2l2 .(3.15)475

476

We establish that Ek+1 is bounded by the L2-energy of the previous time-step Ek and477
|fin(·, tk, ·)|∂Ω,N . Recursion then implies that Ek+1 is bounded solely by the initial478
and the boundary data.479

For convenience, we define a few objects. For a vector z ∈ RN , with ‖z‖L we
represent the norm

‖z‖L:=
√
zTLz.

Interpreting z as a vector that contains the value of a function g : Ωξ → R at the quad-480
rature points and recalling that L is a diagonal matrix with the quadrature weights481
on its diagonal, we conclude that ‖z‖L represent an approximation to ‖g‖L2(Ωξ). We482
bound the l2-norm of a moment vector λ = ALz as483

‖λ‖l2≥ σmin(A
√
L)‖z‖L, ‖λ‖l2≤ σmax(A

√
L)‖z‖L,(3.16)484485

where σmin/max(A
√
L) represent the minimum/maximum singular value of the matrix486

A
√
L. We will use the above two bounds to convert stability results for the DVM to487

stability results for the moment approximation.488
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3.5.1 Collision step We start with the collision step given in (3.6). Applying489
triangle’s inequality to the collision step we find490

(3.17) Ek∗ ≤
2

(1 + ∆t/τ)2 Ek + 2
(

∆t/τ
1 + ∆t/τ

)2 Nx∑
i=1

‖
〈
PMf

k
M,i

〉
N
‖2l2︸ ︷︷ ︸

≤σmax(A
√
L)2‖W (fkM,i

)‖2
L

.
491

The bound on the right hand side follows from the inequalities in (3.16). From page-92492
of [23] we know that the solution to the entropy-minimization problem (2.16) satisfies493

‖W (fkM,i)‖2L≤ N3 exp(2Ntk).(3.18)494495

The above relation and the bound on Ek∗ given in (3.17) provides496

Ek∗ ≤
2

(1 + ∆t/τ)2 Ek + 2
(

∆t/τ
1 + ∆t/τ

)2
Nxσmax(A

√
L)2N3 exp(2Ntk).(3.19)497

498

3.5.2 Transport step With the following three steps, we establish the stability499
of the transport step given in (3.8). (i) We recover a DVM underlying the transport500
step in (3.8). (ii) Using stability properties of an upwind scheme, we establish the501
stability of the DVM. (iii) Finally, relating the discrete velocity solution to the moment502
solution, we establish the stability of the moment scheme. The details of these three503
steps is as follows.504

We consider the reformulated transport step given in (3.13). Let N (AL) represent505
the null-space of the matrix AL, where A and L are as given in (2.8) and (2.9),506
respectively. Then, the transport step provides507

(3.20)
W (fk+1

i ) =(1− Λ|Ξ|)W (fk
∗

i )

+ Λ
2 (|Ξ|−Ξ)W (fk

∗

i+1) + Λ
2 (|Ξ|+Ξ)W (fk

∗

i−1) + v,
508

where v belongs toN (AL). Since the moments at time step tk+1—given asALW (fk+1
i )—509

are invariant under the choice of v, we choose v = 0. This makes the above evolution510
equation a space-time discretization of a system of decoupled linear advection equa-511
tions given as ∂tW (f) + Ξ∂xW (f) = 0. The discretization uses an explicit Euler and512
an upwind FV scheme to discretize the space and the time domain, respectively. From513
Example-7.2 of [33] we know that such a discretization is L2-stable under the CFL514
condition515

0 < Λ ≤ min{|ξ−1
max|, |ξ−1

min|}/2.(3.21)516517

This provides518

Nx∑
i=1
‖W (fk+1

i )‖2L≤
Nx∑
i=1
‖W (fk

∗

i )‖2L+|fin(·, tk, ·)|2∂Ω,N .(3.22)519
520

Above, |·|∂Ω,N is as defined in (3.11). Using the bounds in (3.16) , we express the521
above bound in terms of moments to find522

Ek+1 ≤ κ(A
√
L)2Ek∗ + σmax(A

√
L)2|fin(·, tk, ·)|2∂Ω,N .(3.23)523524

Above, κ(A
√
L) represents the condition number of the matrix A

√
L. We collect our525

stability estimate in the result below.526
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Theorem 3.2. Consider the evolution scheme given in Subsection 3.2 and let Ek527
be the L2-energy defined in (5.5). Assume that the boundary data satisfies (3.10)528
and that the ratio Λ = ∆t/∆x satisfies Λ ∈ (0,min{|ξ−1

max|, |ξ−1
min|}/2]. Then, Ek+1 is529

bounded as530

Ek+1 ≤ Bk + BM + Bin(3.24)531532

where533

(3.25)

Bk :=κ(A
√
L)2 2

(1 + ∆t/τ)2 Ek,

BM :=2κ(A
√
L)2σmax(A

√
L)2

(
∆t/τ

1 + ∆t/τ

)2
NxN

3 exp(2Ntk),

Bin :=σmax(A
√
L)2|fin(·, tk, ·)|2∂Ω,N .

534

We make the following remarks related to the above theorem.535
1. The terms Bk, BM and Bin appearing in (3.24) represent the contribution536

from the previous time step, the discrete Maxwell-Boltzmann distribution537
function and the boundary data, respectively, into bound for the L2-energy538
at time tk+1. Note that out of all these three terms, only Bk depends upon539
the solution of the previous time-step.540

2. For the limit τ → 0, at least formally, the BE results in the Euler equations541
[13]. Under this limit, the bound in (3.24) is robust, which is a result of542
performing the collision step implicitly.543

3. The DVM corresponding to the transport step given in (3.20) is a space-544
time discretization of a linear hyperbolic PDE. As a result, the L2-bound545
for the transport step (given in (3.23)) is linear in time. In contrast, since546
the collision operator is non-linear, the collision step is non-linear. One can547
attribute this non-linearity to the exponential-in-time growth in BM.548

4. For a fixed truncated velocity domain Ωξ, consider the limit N,M →∞ with549
N > M . Under this limit, the bound on Ek+1 is not robust because—at least550
heuristically—both κ(A

√
L) and σmax(A

√
L) are almost independent of N551

and grow polynomially with M . To derive bounds that are independent of552
κ(A
√
L) and σmax(A

√
L), one should directly consider the moment approxi-553

mation without accessing the underlying DVM. As yet, it is unclear how to554
proceed with such a technique.555

5. Nowhere in the proof of the above theorem we used the fact that we minimize556
the L2-norm in the moment-closure problem given in (2.7). Therefore, the557
bound on Ek+1 holds for any other objective functional and specifically for558
the minimum-entropy closure considered in [16, 30].559

3.6 Computational costs We study the cost of evolution scheme outlined in560
Subsection 3.2. We consider the cost of a single time-step performed in a single spatial561
cell.562

1. Entropy-minimization step: We use Newton iteration to solve the entropy-563
minimization problem where we compute and invert a Hessian H(x, t) given564
as565

(H(x, t))kl :=
∑
i

(Pcons(ξi))k (Pcons(ξi))l exp(Pcons · α(x, t))ωi,(3.26)566
567
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where α(x, t) are the Lagrange multipliers in R3. Computing the Hessian
is an O(N) operation. As a stopping criterion to the Newton solver, we
consider a user-defined tolerance of TOL in the moment constraints. Suppose
we need mTOL Newton iterations to reach this tolerance then, the total cost
of entropy-minimization is given as

Centropy = O(NmTOL).

In all our numerical examples, we choose TOL = 10−8.568
2. Collision step: Computing theM -moments of the discrete Maxwell-Boltzmann

pdf is an O(NM) operation and updating the moments in the collision step
is an O(M) operation. Thus, the total cost of the collision step is given as

Ccol = O(MN).

3. Optimization step: We use the quadprog routine from matlab to solve the569
optimization problem in (2.7) and we use the default interior-point-convex570
solver with all the parameters set to their default values. Usually, it is difficult571
to estimate the complexity of this algorithm but a crude estimate gives [42]572

Copt = O(N3).(3.27)573574

4. Transport step: Flux computation is an O(MN) operation and the time
update of the moments is an O(M) operation. Thus the cost of the transport
step is

Ctran = O(MN).

Summing up the above costs, the total cost of our evolution scheme is given as

Ctotal = O(NmTOL) +O(MN) +O(N3).

Remark 7 (Efficiency of the optimization step). For N > M (the values of N575
that interest us, see Remark 3) and a sufficiently small mTOL, solving the quadratic576
optimization problem is the most expensive part of the algorithm. A possible way to577
overcome this high cost is to train an auto-encoder/gaussian-regression to replace the578
quadratic optimization problem [17, 25]. We plan to consider this direction in the579
future.580

4 Extension to multi-dimensions Maintaining consistency with our numer-581
ical experiments, we propose an extension of our method to two-dimensional planar582
flows. An extension to three-dimensional problems is similar and is not discussed583
for brevity. For 2D problems, we reduce the storage requirements by solving for the584
reduced pdfs h1 and h2 given as [41]585

(4.1)
h1(x, t, ξ1, ξ2) :=

∫
R
f(x, t, ξ1, ξ2, ξ3)dξ3,

h2(x, t, ξ1, ξ2) :=
∫
R
ξ2
3f(x, t, ξ1, ξ2, ξ3)dξ3.

586

In the coming discussion, ξ will represent a velocity vector in R2 and with 〈g〉 we587
will represent the integral of a function ξ 7→ g(ξ) over R2. To derive the governing588
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equation for h1 and h2, we multiply the BE given in (1.1) by 1 and ξ2
3 and integrate589

over R with respect to ξ3 to find590

∂thi + ξ1∂x1hi + ξ2∂x2hi = 1
τ

(hi,M − hi) .(4.2)591
592

Above, hi,M represents the reduced Maxwell-Boltzmann pdf and is given as593

h1,M = ρ

2πθ exp
(
−|ξ − v|

2

2θ

)
, h2,M = ρ

2π exp
(
−|ξ − v|

2

2θ

)
,(4.3)594

595

where, |·| is the Eucledian norm of a vector. Note that the mass ρ, the momentum596
ρv and the temperature θ can be recovered from h1 and h2 via597

(4.4) ρ = 〈h1〉 , ρv = 〈ξh1〉 , ρθ = 1
3
(〈
|ξ|2h1

〉
− ρ|v|2+ 〈h2〉

)
.598

4.1 Moment equations The moment approximation we discuss below is the599
same for both h1 and h2. Therefore, for the simplicity of notation, we present our600
approximation for some representative h. Similar to the 1D case, we truncate the601
velocity domain to R2 ⊃ Ωξ = [ξ1,min, ξ1,max]× [ξ2,min, ξ2,max]. To compute ξi,max/min,602
we adopt the same methodology as that outlined in Subsection 2.4. We consider ten-603
sorized N ×N Gauss-Legendre quadrature points inside Ωξ. Using these quadrature604
points, we approximate 〈·〉 by 〈·〉N,N .605

To derive a governing equation for the moments of h, we first define a polynomial606
in ξ. With βM := (βM1 , βM2 ) ∈ R2 we represent a multi-index with each entry being607
a natural number and the l1-norm of βM being equal to M . Using βM , we define608

a M -th order polynomial in ξ via pβM = ξ
βM1
1 ξ

βM1
2 . Note that for a given M , βM is609

non-unique—for M = 1, βM could either be (0, 1) or (1, 0). In a vector PM (ξ), we610
collect all the polynomials pβM upto order M − 1. For completeness, we present the611
entries in PM (ξ) for M = 3 and M = 5.612

(4.5)
M=3: PM (ξ) =

(
1, ξ1, ξ2, ξ2

1 , ξ1ξ2, ξ
2
2
)T ;

M=5: PM (ξ) =
(
1, ξ1, ξ2, ξ2

1 , ξ1ξ2, ξ
2
2 , ξ

3
1 ,

ξ2
1ξ2, ξ1ξ

2
2 , ξ

3
2 , ξ

4
1 , ξ

3
1ξ

1
2 , ξ

2
1ξ

2
2 , ξ1ξ

3
2 , ξ

4
2
)T
.

613

Note that for M = 3 and M = 3, PM (ξ) contains 6 and 15 entries, respectively.614
For some M ∈ N, we approximate h by hM where we compute hM (more precisely615

W (hM )) using the L2-minimization problem given in (2.7). To evolve the moments of616
hM , we use a multi-dimensional version of the moment system given in (2.18), which617
reads618

(4.6)

∂t 〈PMhM 〉N,N +∂x1 〈PMξ1hM 〉N,N + ∂x2 〈PMξ2hM 〉N,N

= 1
τ

(〈PMhM,N 〉N,N − 〈PMhM 〉N,N ) on Ω×D,

〈PMhM (t = 0)〉N,N = 〈PMh0〉N,N on Ω.

619

Above, hM,N is a discretization of the Maxwell-Boltzmann pdf that results from620
solving a multi-dimensional version of the optimization problem given in (2.16)—see621
[22] for an explicit form of this optimization problem. The treatment of boundary622
conditions is the same as that for the 1D case and is not discussed for brevity.623
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4.2 Space-time discretization For simplicity, we consider a square spatial624
domain Ω = [x1,min, x1,max] × [x2,min, x2,max]. We discretize Ω with Nx number of625
uniform elements in each spatial dimension and with ∆x we represent the grid spacing.626
With some additional technical details, it is straightforward to extend our framework627
to curved domain discretized with unstructured meshes. For simplicity, we consider628
a fixed time-step of size ∆t.629

We index a spatial cell with (i, j) where i, j ∈ {1, . . . , Nx}. With
〈
PMh

k
i,j

〉
N,N

630

we represent a FV approximation to 〈PMhM (x, tk, ·)〉N,N in the cell Ii,j . Given631 〈
PMh

k
i,j

〉
N,N

, we want to compute the FV approximation at the next time instance.632
To this end, we follow the same four steps as those outlined for the 1D-case in Sub-633
section 3.2. The entropy-minimization step, the collision step and the optimization634
step are very similar to the 1D case and, for brevity, we do not repeat them here. The635
transport step is slightly different and is given as636

(4.7)

〈
PMf

k+1
i,j

〉
N,N
−
〈
PMf

k∗

i,j

〉
N,N

∆t =− 1
∆x

(
F1(W (fk,∗i+1,j),W (fk,∗i,j ))

−F(W (fk,∗i,j ),W (fk,∗i−1,j))
)

− 1
∆x

(
F2(W (fk,∗i,j+1),W (fk,∗i,j ))

−F2(W (fk,∗i,j ),W (fk,∗i,j−1))
)
.

637

Above, {W (fk,∗i,j )}i,j results from the optimization step and F1(W1,W2) and F2(W1,W2)638
are the numerical fluxes given as639

Fi(W1,W2) := 1
2 (AL(Ξi − |Ξi|)W1 +AL(Ξi + |Ξi|)W2) .(4.8)640

641

Above, A and L are multi-dimensional versions of the matrices given in (2.8) and Ξi642
is a diagonal matrix with all the i-th components of the quadrature point’s locations643
at its diagonal.644

Assuming that the initial and the boundary data satisfies (3.10), one can show that645
the space-time discretization results in a feasible optimization if the ratio Λ = ∆t/∆x646
satisfies647

0 < Λ ≤ 1
2 min

i

{
min

{
|ξ−1
i,max|, |ξ

−1
i,min|

}}
.(4.9)648

649

Similarly, one can show that the space-time discretization is L2-stable if Λ satisfies650

0 < Λ ≤ 1
4 min

i

{
min

{
|ξ−1
i,max|, |ξ

−1
i,min|

}}
.(4.10)651

652

A proof of the above two results uses the exact same technique as that for the 1D653
case and is not repeated for brevity.654

5 Numerical Results For simplicity, we non-dimensionalize the BE and all655
the macroscopic quantities with appropriate powers of some reference density ρ0,656
temperature θ0 and length scale l. This introduces the Knudsen number Kn, the657
inverse of which scales the collision operator Q(f), and reads Kn := τ0/

(√
θ0l
)
—we658

refer to [32] for the details of non-dimensionalization. In the definition of the collision659
frequency τ(x, t)−1 given in (2.14), we choose C = 1 and ω = 1. Our choice of C and660
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ω does not necessarily corresponds to a physical system and is made for demonstration661
purposes.662

We consider the following test cases.663
1. Test case-1 We consider the pdf664

f(ξ) = 1√
2πθ0

exp
(
− (ξ − u0)2

2θ0

)
+ 1√

2πθ1
exp

(
− (ξ − u1)2

2θ1

)
.(5.1)665

666

Given the first M moments of f and using the pos-L2-MOM, we approximate667
the M + 1-st moment of f . We study the error of this approximation with668
respect to the number of moments M . We choose θ0 = 3, u0 = −4, θ1 = 4669
and u1 = 5, which ensures that f is far away from a Maxwell-Boltzmann670
distribution function in the Kullback–Leibler divergence sense.671

2. Test case-2 For a one-dimensional space-velocity domain, we consider the672
Sod’s shock tube problem from [35]. We set Ω = [−2, 2] and D = [0, 0.3].673
Recall that D is the time domain. As the initial data, we consider a gas at674
rest and at equilibrium. We initialize the temperature θ with a constant value675
of one and we initialize density as676

ρ(x, t = 0) =
{

7, x ≤ 0
1, x > 0

.(5.2)677
678

As the boundary data fin, we consider a Maxwell-Boltzmann pdf. At x =679
xmin and for all t ∈ D, we set density to 7, velocity to 0 and temperature680
to 1. The velocity and the temperature at the right boundary remains the681
same but the density changes to 1. We consider two different values of the682
Knudsen number—Kn = 0.1 and Kn = 0.01.683

3. Test case-3 For a one-dimensional space-velocity domain, we consider the684
two-beam interaction experiment from [30]. The space-time domain Ω × D685
remains the same as the previous test case. As the initial data, we consider686
a gas at equilibrium with a constant density and temperature of one. As the687
initial velocity, we consider688

v(x, t = 0) =
{

1, x ≤ 0
−1, x > 0

.(5.3)689
690

As the boundary data fin, we consider a Maxwell-Boltzmann pdf. At x =691
xmin and for all t ∈ D, we set density to 1, velocity to 1 and temperature692
to 1. The density and the temperature at the right boundary remains the693
same but the velocity changes to −1. We consider two different values of the694
Knudsen number—Kn = 0.1 and Kn = 0.01.695

4. Test case-4 We consider a two-dimensional spatial domain and a planar flow696
regime. We choose Ω = [0, 2] × [0, 2] and D = [0, 0.2]. We consider a micro-697
bubble dispersion problem where we start with a fluid at equilibrium and at698
rest. We consider a constant temperature of one and consider a density given699
as700

ρ(x, t = 0) = ρ0 + exp(−|x− 1|2×102), ∀x ∈ Ω.(5.4)701702

As the ground state density, we set ρ0 = 1. As the boundary data fin,703
we consider a Maxwell-Boltzmann pdf with a density ρ0, velocity zero and704
temperature one. We consider a Knudsen number of 0.1.705
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We emphasis that for this test case, it is crucial that the moment-closure706
problem has a positive solution. Otherwise, the density can get negative707
resulting in a breakdown of the solution algorithm. We refer to [27] for708
a similar experiment involving the linearized BE and the Grad’s Hermite709
expansion, which is not necessarily positive. There, the deviation in density710
gets negative for small values of M . However, since the BE is linearized,711
negative densities do not crash the solution algorithm.712

5.1 Test case-1 We truncate the velocity domain to Ωξ = [−20, 20]. This713
ensures that the support of f (upto machine precision) is contained inside Ωξ. We714
compute W (fM ) using the optimization problem given in (2.7).715

5.1.1 Error in the higher order moment Recall that we used fM to close716
the moment system in (2.18) by approximating the M -th order moment of f . The717
relative error of this approximation is given as718

E(M) :=

∣∣∣∣∣
〈
ξM (fM − f)

〉
N

〈ξMf〉N

∣∣∣∣∣ .(5.5)719
720

We study E(M) for different values of M . We vary M from 3 to 22 in steps of one,721
and we fix N at a sufficiently large value of 40.722

As M increases, E(M) appears to converge to zero, although not monotonically—723
see Figure 1a. Note that this non-monotonic convergence is typical also for a Grad’s724
moment approximation [11, 27, 36]. However, unlike the Grad’s moment approxima-725
tion where the error convergences monotonically for either the even or the odd values726
of M , the convergence behaviour of the pos-L2-MOM is rather random. For instance,727
the error (slightly) increases from M = 5 to M = 7. Similarly, the error (slightly)728
increases from M = 15 to M = 17. Nevertheless, for M ≥ 16, the error appears to729
converge monotonically.730

5.1.2 Error in approximating the pdf For different values of M , Figure 1b731
compares f to fM . To extend the discrete values of fM to Ωξ, we perform a piecewise732
linear interpolation between the quadrature points. For M = 3, pos-L2-MOM is733
unable to capture the general shape of the function. Nevertheless, increasing the734
value of M improves the results. Already for M = 5, we observe that fM has two735
distinct peaks and starts to capture the shape of the function. Increasing M from736
5 to 7 does not show much of an improvement. However, increasing M from 7 to 9737
improves the results significantly. The result for M = 9 almost overlaps the exact738
solution with little deviations. Let us mention that for all values of M , fM remains739
positive.740

For a comparison, we compute a DG approximation of f . We represent the DG741
approximation by fDGM and compute it by projecting f (under the L2(Ωξ) inner-742
product) onto the first M Legendre polynomials in ξ. For the different values of M ,743
Figure 1c compares f to fDGM . Since a DG approximation does not penalize negativity744
(see Remark 1), for all values of M , fDGM is negative for some part of the velocity745
domain. Furthermore, only for M ≥ 11, the DG approximation starts to capture746
the general shape of the function. Compare this to fM , which, already for M = 5,747
accurately represents the shape of the function.748

The superior accuracy of fM—as compared to fDGM —in approximating f is clearly749
visible in Figure 1d, which compares the relative L2-error in approximating f . The750
difference between the error values becomes larger as the value of M increases. For the751
largest value ofM equals 22, the relative L2-error resulting from the approximation fM752
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is 8×10−4, which is ≈ 10−2 times smaller than that resulting from the approximation753
fDGM .754

(a) Convergence behaviour (b) f and fM

(c) f and fDG
M

(d) Comparison of the relative L2-error

Fig. 1: Results for test case-1. (a) and (d) y-axis is on a log-scale.

5.2 Test case-2755

5.2.1 Reference solution We compute the reference solution using a DVM756
proposed in [22]. We consider an explicit Euler time-stepping scheme and a first-757
order FV spatial discretization. We truncate the velocity domain to [−7, 7], and758
place N = 350 velocity grid points inside the truncated velocity domain. As the759
velocity grid points, we consider Gauss-Legendre quadrature nodes. We discretize760
the space domain with Nx = 103 uniform cells and consider a constant time-step761
of ∆t = 0.5 × ∆x/7. To arrive at these discretization parameters, we performed a762
convergence study that consisted of the following steps. (i) With the velocity and763
the temperature field taken from the initial data, estimate ξmax/min using the relation764
in (2.20). For the present test case, this provides ξmax = 3.5 and ξmin = −3.5. (ii)765
Fix Nx at 103 and ∆t to 0.5 × ∆x/ξmax. (iii) Choose N = 50 and increase it to766
350 in steps of 50. (iv) Terminate the refinement as soon as the relative change in767
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mass, momentum and energy between two subsequent refinement cycles drops below768
a tolerance of 10−5. (v) If the tolerance is not reached, increase ξmax by 0.5, decrease769
ξmin by 0.5 and repeat the process from step-(ii). Note that if the refinement cycle770
does not terminate then one should increase the value of Nx and repeat the entire771
process. For the all the test cases mentioned earlier, the value of Nx = 103 was772
sufficiently large to terminate the refinement cycle.773

5.2.2 Convergence study We are interested in the relative L2 error in the774
different macroscopic quantities that we define as775

Econs(M,Nx) :=
‖〈Pcons(fM,Nx(·, t = T, ·)− fDVM (·, t = T, ·))〉N ‖L2(Ω;R3)

‖〈PconsfDVM (·, t = T, ·)〉N ‖L2(Ω;R3)
.(5.6)776

777

Above, Pcons and fM,Nx are as defined in (2.13) and (3.4), respectively. We keep the778
value of N fixed at 30.779

We first consider Kn = 0.1. We increase M from 3 to 10 in steps of 1 and Nx780
from 200 to 103 in steps of 200. We choose ∆t = 0.5 × ∆x/7. Figure 2a shows781
the error Econs(M,Nx) for the different values of M and Nx. Fixing Nx at a small782
value—200 for instance—and increasing M does not reduce the error. This is be-783
cause for small values of Nx, the error is dominated by the error in our space-time784
discretization. Furthermore, for a small value of M , increasing Nx beyond a certain785
limit does not decrease the error. On the other hand, choosing a large value of Nx—786
103 for instance—and increasing M , or increasing both M and Nx simultaneously,787
reduces the error. Note that similar to the previous test case, the error decay is not788
monotonic. Our results suggest that to balance the accuracy with the computational789
cost, an adaptive choice of M and an adaptive spatial grid is desirable. We plan to790
develop such an adaptive framework in the future—see [2] for an adaptive moment791
method. Let us also mention that at Nx = 103 and M = 10, we attain a minimum792
relative error of 2.4 × 10−2. We find this error value acceptable, given that M = 10793
is less than 10% of the velocity grid points used in our reference DVM.794

We now consider Kn = 0.01. We choose M and Nx as before. Figure 2a shows the795
error Econs(M,Nx) for the different values of M and Nx. As compared to Kn = 0.1,796
the smaller values of M perform much better, which is in accordance with similar797
studies conducted in the previous works [36]. For instance, consider the results for798
M = 4 and Nx = 103. For Kn = 0.1, we find Econs(4, 103) = 1.3× 10−1, whereas for799
Kn = 0.01 we find Econs(4, 103) = 2.5× 10−2, which is almost an order-of-magnitude800
better than the result for Kn = 0.1.801

Although the lower values of M perform better for Kn = 0.01 than for Kn = 0.1,802
the minimum error attained is almost the same for both the Knudsen number—803
for Kn = 0.01 the minimum error is 2.3 × 10−3, which is 0.95 times that of the804
minimum error for Kn = 0.1. This is because for Kn = 0.01, the error at Nx = 103 is805
already dominated by the error in our spatial discretization and we see almost no error806
reduction upon increasing M from 7 to 10. By increasing Nx from 103 to 1.5 × 103,807
we could remove this error stagnation and for M = 10, achieve an error of 1.2×10−3.808

809

5.2.3 Sub-shocks Shock speeds that are faster than the characteristic speeds810
in a moment system result in sub-shocks—we refer to [34] for an exhaustive study811
of sub-shocks for the Grad’s MOM. Similar to the Grad’s MOM, the pos-L2-MOM812
shows sub-shocks-type structures—see the density profile shown in Figure 3. These813
structures have a staircase-type shape, and increasing M from 3 to 5 has a smoothing814
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(a) (b)

Fig. 2: Results for test case-2. Convergence of the relative error with Nx and M .
Computations performed using the pos-L2-MOM. (a) Kn = 0.1 and (b) Kn = 0.01.
The z-axis on both the plots is on a log-scale.

effect that reduces the staircase effect. To conclude that these structures are indeed815
sub-shocks, one needs to study the characteristic speeds of the moment system given816
in (2.18). Note that these sub-shocks can be removed by introducing second-order817
spatial derivatives in the moment equations via regularization—see the discussion on818
the regularized-13 moment equations [39].819

Fig. 3: Results for test case-2. Density profile for Kn = 0.1 and at t = T . Computa-
tions performed with Nx = 103 grid-cells.

5.3 Test case-3 As before, we construct a reference solution using the DVM.820
The convergence study discussed in Subsection 5.2.1 lead to Nx = 103, ξmax = 5,821
ξmin = −5 and N = 350. For the pos-L2-MOM, we fix N = 30 and Nx = 103,822
and study the results for two different values of M , M = 5 and M = 7. We choose823
∆t = 0.5∆x/ξmax. The convergence behaviour is similar to the previous test case and824
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not discussed for brevity.825
For Kn = 0.1 and M = 5, Figure 4a compares the density and the velocity826

computed using the DVM and the pos-L2-MOM. The results for temperature are827
similar and are not shown for brevity. The pos-L2-MOM performs well and results in828
an error of Econs(5, 103) = 6.8× 10−2. Furthermore, increasing the value of M from 5829
to 7 improves the results and the error reduces to Econs(7, 103) = 2.5×10−2—Figure 4b830
shows the result for M = 7. Reducing the Knudsen number to 0.01, improves the831
results for both M = 5 and M = 7—see Figure 4c and Figure 4d. For both the values832
of M , we obtained an error of Econs(5/7, 103) = 9 × 10−3, which is approximately833
1/3 of the error for Kn = 0.1. Note that similar to the previous test case, the error834
for Kn = 0.01 is dominated by the error in the space-time discretization. Therefore,835
increasing M from 5 to 7 does not offer any improvement.836

(a) M = 5, Kn = 0.1 (b) M = 7, Kn = 0.1

(c) M = 5, Kn = 0.01 (d) M = 7, Kn = 0.01

Fig. 4: Results for test case-3. Density and velocity profiles for different values of
M and different Knudsen numbers. The left and the right y-axis is for density and
velocity, respectively.
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5.4 Test case-4 Under the limited computational resources, we were unable837
to compute a highly-refined reference solution in multi-dimensions. For this reason,838
we refrain from performing a convergence study for the present test case. Rather,839
we compare our moment method to a sufficiently refined DVM and showcase an840
improvement in the moment solution by increasing M . For both the DVM and the841
moment method, we consider tensorized Gauss-Legendre quadrature points with N =842
40 quadrature points in each direction. We place these quadrature points inside843
Ωξ = [ξmin, ξmax] × [ξmin, ξmax] with ξmax = 7 and ξmin = −7. We discretize the844
spatial domain with 150× 150 uniform elements with grid-size ∆x = 1.3× 10−2. We845
consider a constant time-step of ∆ = ∆x/(4× ξmax).846

As time progresses, the density disperses into the spatial domain. This is made847
clear by Figure 5a that shows the density profile at t = T computed using the DVM.848
At the same time-instance, Figure 5b and Figure 5c show the density profile at t = T849
computed using the pos-L2-MOM with M = 3 and M = 5, respectively. As expected,850
both the density profiles are positive. Furthermore, the moment solution appears851
to improve upon increasing the value of M . The improvement is quantified by the852
decrease in the relative L2-error in density shown in Table 1.853

The dispersion of the micro-bubble triggers a flow velocity and a temperature854
gradient. Figure 6 compares the x1 velocity component and the temperature along a855
cross-section of the spatial domain computed using the pos-L2-MOM and the DVM.856
The results for the x2 velocity component are similar and are not shown for brevity.857
As expected, similar to density, the results for both the velocity and the temperature858
appear to improve as M is increased from 3 to 5, the relative L2-error shown in859
Table 1 indicates the same. We note that, as compared to the previous test cases, the860
moment method performs better for the present test case. A possible reason for this861
could be that our DVM solution is not as refined as for the previous test cases—the862
previous test cases consider a 1D velocity grid of 350 points whereas the present test863
case considers a tensorized grid of 40× 40 points.864

M ρ v1 v2 θ

3 1.6× 10−3 2× 10−1 2.1× 10−1 2.8× 10−3

5 5.3× 10−4 5× 10−2 4.8× 10−2 5.4× 10−4

Table 1: Results for test case-4. Relative L2(Ω)-error in different macroscopic quan-
tities at t = T and Kn = 0.1.

6 Conclusions We proposed a positive moment method for the Boltzmann-865
BGK equation based upon L2-minimization. We showed that on a space-time dis-866
crete level both the feasibility of the minimization problem and the stability of the867
moment approximation can be ensured via a CFL-type condition. Our proof of booth868
these properties relied on relating our moment method to a discrete-velocity-method.869
Through a entropy-minimization based discretization of the collision operator, we en-870
sured that our moment approximation conserves mass, momentum and energy. We871
also extended our method to a multi-dimensional space-velocity domain. With the872
help of numerical experiments, we studied the accuracy of our method for both single873
and multi-dimensional space-velocity domains. Our method performed well for a874
broad range of problems involving strong shocks, beam interaction and micro-bubble875
dispersion. Furthermore, it retained accuracy for a broad range of Knudsen numbers.876
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(a) DVM, Kn = 0.1 (b) M = 3, Kn = 0.1

(c) M = 5, Kn = 0.1

Fig. 5: Results for test case-4. Density profiles at t = T .
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